Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400956, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635863

RESUMO

Photoactivable chemotherapy (PACT) using metallic complexes provides spatiotemporal selectivity over drug activation for targeted anticancer therapy. However, the poor absorption in near-infrared (NIR) light region of most metallic complexes renders tissue penetration challenging. Herein, an NIR light triggered dinuclear photoactivable Ru(II) complex (Ru2) is presented and the antitumor mechanism is comprehensively investigated. The introduction of a donor-acceptor-donor (D-A-D) linker greatly enhances the intramolecular charge transition, resulting in a high molar extinction coefficient in the NIR region with an extended triplet excited state lifetime. Most importantly, when activated by 700 nm NIR light, Ru2 exhibits unique slow photodissociation kinetics that facilitates synergistic photosensitization and photocatalytic activity to destroy diverse intracellular biomolecules. In vitro and in vivo experiments show that when activated by 700 nm NIR light, Ru2 exhibits nanomolar photocytotoxicity toward 4T1 cancer cells via the induction of calcium overload and endoplasmic reticulum (ER) stress. These findings provide a robust foundation for the development of NIR-activated Ru(II) PACT complexes for phototherapeutic application.

2.
Angew Chem Int Ed Engl ; 62(44): e202312600, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37654187

RESUMO

The design of efficient heavy atom-free triplet photosensitizers (PSs) based on through bond charge transfer (TBCT) features is a formidable challenge due to the criteria of orthogonal donor-acceptor geometry. Herein, we propose using parallel (face-to-face) conformation carbazole-bodipy donor-acceptor dyads (BCZ-1 and BCZ-2) featuring through space intramolecular charge transfer (TSCT) process as efficient triplet PS. Efficient intersystem crossing (ΦΔ =61 %) and long-lived triplet excited state (τT =186 µs) were observed in the TSCT dyad BCZ-1 compared to BCZ-3 (ΦΔ =0.4 %), the dyad involving TBCT, demonstrating the superiority of the TSCT approach over conventional donor-acceptor system. Moreover, the transient absorption study revealed that TSCT dyads have a faster charge separation and slower intersystem crossing process induced by charge recombination compared to TBCT dyad. A long-lived charge-separated state (CSS) was observed in the BCZ-1 (τCSS =24 ns). For the first time, the TSCT dyad was explored for the triplet-triplet annihilation upconversion, and a high upconversion quantum yield of 11 % was observed. Our results demonstrate a new avenue for designing efficient PSs and open up exciting opportunities for future research in this field.

3.
J Mater Chem B ; 11(34): 8182-8193, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37545413

RESUMO

Fluorescent dyes with aggregation-induced emission (AIE) characteristics have shown potential applications in the fields of biological imaging, photodynamic therapy and photothermal therapy, in which photosensitizers (PSs) play a crucial role. However, how to design high-quality PSs with high reactive oxygen species (ROS) generation efficiency remains unclear. In this contribution, an effective molecular design strategy to improve the ROS generation efficiency of AIE PSs was proposed. A series of tetraphenylethylene derivatives containing the pyridine ring or pyridinium with different substituents were designed and synthesized. All the molecules were weakly emissive when molecularly dissolved in solution but displayed intense emission upon aggregation, demonstrating a phenomenon of AIE characteristic. Pyridinium molecules could be used as visualization agents to specifically stain the mitochondria in living cells, while most of the molecules failed to generate ROS upon white light irradiation. In contrast, TPE-Pys-BP containing benzophenone produced ˙OH and 1O2 efficiently in the presence of light due to its large spin-orbit coupling constant to promote efficient intersystem crossing. Such a property allowed TPE-Pys-BP to serve as a PS to kill cancer cells using photodynamic therapy. TPE-Pys-BP also exhibited mechanochromic luminescence (ML), and its emission could be reversibly switched between two distinct colors through repeated grinding and fuming processes. A security paper was fabricated using the ML properties of TPE-Pys-BP.


Assuntos
Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Células HeLa , Corantes Fluorescentes
4.
Phys Chem Chem Phys ; 24(35): 20901-20912, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36047252

RESUMO

Herein, a series of compact anthracene carboxyimide (ACI) based donor-acceptor dyads were prepared by substituting bulky aryl moieties with various electron-donating ability to study the triplet-excited state properties. The ISC mechanism and triplet yield of the dyads were successfully tuned via structural manipulation. Efficient ISC (ΦΔ ≈ 99%) and long-lived triplet state (τT ≈ 122 µs) was observed for the orthogonal anthracene-labeled ACI derivative compared to the Ph-ACI and NP-ACI dyads, which showed fast triplet state decay (τT ≈ 7.7 µs). Femtosecond transient absorption study demonstrated the ultrafast charge separation (CS) and efficient charge recombination (CR) in the orthogonal dyads and ISC occurring via spin-orbit charge transfer (SOCT) mechanism (AN-ACI: τCS = 355 fs, τCR = 2.41 ns; PY-ACI: τCS = 321 fs, τCR = 1.61 ns), while in Ph-ACI and NP-ACI dyads triplet populate following the normal ISC channel (nπ* → ππ* transition), no CS was observed. We found that the attachment of suitable aryl donor moiety (AN- or PY-) to the ACI core can ensure the insertion of the intermediate triplet state, resulting in a small energy gap among charge separated state (CSS) and triplet state, which leads to efficient ISC in these derivatives. The SOCT-ISC-based AN-ACI dyad was confirmed to be a potent photodynamic therapeutic reagent; an ultra-low IC50 value (0.27 nM) that was nearly 214 times lower than that of the commercial Rose Bengal photosensitizer (57.8 nM) was observed.


Assuntos
Elétrons , Fármacos Fotossensibilizantes , Antracenos , Indicadores e Reagentes , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...