Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 318: 121129, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479458

RESUMO

The effect of beating starting pulp was investigated on the oxidation efficiency of ammonium persulfate (APS), the yield, and the properties of the CNCs. The beaten pulp and the subsequent CNCs were characterized, respectively, by different techniques. The CNCs were classified as CNC1 and CNC2, dependent on ultrasonication. It showed that the beating exposed more free OH groups in the pulp and enhanced the yield and surface charges of CNCs. Compared to the CNC2, the CNC1 had a higher surface charge, higher crystallinity, higher thermal stability, shorter length, smaller length distribution, and slightly larger width. The CNC1 and CNC2 had similar rheological properties. For the beaten pulp with a beating degree of 25°SR, the yields of the CNC1 and the total CNCs reached the maximum, 42.65 and 34.11 %, respectively. The surface charges of the CNC1 and the CNC2 also reached the maximum, -44.5 and - 33.6 mV, respectively. Their crystallinity indexes were 80.07 and 75.42 %, respectively. The lengths of the CNC1 and the CNC2 were 157.31 ± 30.61 and 214.92 ± 65.52 nm, and their widths were 10.13 ± 2.74 and 9.43 ± 2.99 nm, respectively. Therefore, proper beating enhanced the APS oxidation efficiency and influenced the CNCs properties.

2.
Opt Express ; 27(24): 35230-35237, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878695

RESUMO

Passive, continuous-wave mode-locked (CWML) operation of a 1.83 µm Tm:YLF laser is experimentally demonstrated for the first time, to the best of our knowledge. Two specially selected output couplers are used to realize this operation. Stability of the CWML laser is obtained with a commercial semiconductor saturable absorber mirror. The maximum average output power is 1.04 W with a pulse duration of 107 ps and repetition rate of 54.1 MHz. Further, a 0.1 mm fused-quartz Fabry-Perot etalon is used to tune the central wavelength of the stable CWML laser at 1827.2 nm, 1829.5 nm, 1831.9 nm, and 1833.5 nm.

3.
Opt Lett ; 44(17): 4403-4406, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465412

RESUMO

A high-power and high-efficiency diode-end-pumped Tm:YLF laser at 1.83 µm is demonstrated for the first time, to our best knowledge. To make the laser operate at 1.83 µm, a simple way of controlling the transmittance of the output coupler is used, and the criteria of the transmittance of the output coupler at the emission peaks of Tm:YLF are theoretically analyzed, which are verified by experimental results. Based on the theoretical analysis, laser oscillation at only 1.83 µm is realized. Maximum output power at 1833 nm is 8.5 W with corresponding slope efficiency of 53.4% regarding absorbed pump power. In addition, tunability of this laser from 1827 nm to 1837 nm is obtained. Laser beam quality at 1833 nm is measured to be 1.4 at maximum output power. The achieved laser performance represents considerable improvement compared to any other bulk laser emitting around 1.83 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...