Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 21(1)2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38364290

RESUMO

Objective.Retinal prosthetics offer partial restoration of sight to patients blinded by retinal degenerative diseases through electrical stimulation of the remaining neurons. Decreasing the pixel size enables increasing prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue. We investigated 3-dimensional (3d) structures on top of photovoltaic arrays for enhanced penetration of the electric field, permitting higher resolution implants.Approach.3D COMSOL models of subretinal photovoltaic arrays were developed to accurately quantify the electrodynamics during stimulation and verified through comparison to flat photovoltaic arrays. Models were applied to optimize the design of 3D electrode structures (pillars and honeycombs). Return electrodes on honeycomb walls vertically align the electric field with bipolar cells for optimal stimulation. Pillars elevate the active electrode, thus improving proximity to target neurons. The optimized 3D structures were electroplated onto existing flat subretinal prostheses.Main results.Simulations demonstrate that despite exposed conductive sidewalls, charge mostly flows via high-capacitance sputtered iridium oxide films topping the 3D structures. The 24µm height of honeycomb structures was optimized for integration with the inner nuclear layer cells in the rat retina, whilst 35µm tall pillars were optimized for penetrating the debris layer in human patients. Implantation of released 3D arrays demonstrates mechanical robustness, with histology demonstrating successful integration of 3D structures with the rat retinain-vivo.Significance. Electroplated 3D honeycomb structures produce vertically oriented electric fields, providing low stimulation thresholds, high spatial resolution, and high contrast for pixel sizes down to 20µm. Pillar electrodes offer an alternative for extending past the debris layer. Electroplating of 3D structures is compatible with the fabrication process of flat photovoltaic arrays, enabling much more efficient retinal stimulation.


Assuntos
Membros Artificiais , Degeneração Retiniana , Próteses Visuais , Humanos , Ratos , Animais , Próteses e Implantes , Retina/fisiologia , Neurônios/fisiologia , Estimulação Elétrica , Eletrodos Implantados
2.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014082

RESUMO

Objective: High-resolution retinal prosthetics offer partial restoration of sight to patients blinded by retinal degenerative diseases through electrical stimulation of the remaining neurons. Decreasing the pixel size enables an increase in prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue. We investigate 3-dimensional structures on top of the photovoltaic arrays for enhanced penetration of electric field to permit higher-resolution implants. Approach: We developed 3D COMSOL models of subretinal photovoltaic arrays that accurately quantify the device electrodynamics during stimulation and verified it experimentally through comparison with the standard (flat) photovoltaic arrays. The models were then applied to optimise the design of 3D electrode structures (pillars and honeycombs) to efficiently stimulate the inner retinal neurons. The return electrodes elevated on top of the honeycomb walls surrounding each pixel orient the electric field inside the cavities vertically, aligning it with bipolar cells for optimal stimulation. Alternatively, pillars elevate the active electrode into the inner nuclear layer, improving proximity to the target neurons. Modelling results informed a microfabrication process of electroplating the 3D electrode structures on top of the existing flat subretinal prosthesis. Main results: Simulations demonstrate that despite the conductive sidewalls of the 3D electrodes being exposed to electrolyte, most of the charge flows via the high-capacitance sputtered Iridium Oxide film that caps the top of the 3D structures. The 24 µm height of the electroplated honeycomb structures was optimised for integration with the inner nuclear layer cells in rat retina, while 35 µm height of the pillars was optimized for penetrating the debris layer in human patients. Release from the wafer and implantation of the 3D arrays demonstrated that they are mechanically robust to withstand the associated forces. Histology demonstrated successful integration of the 3D structures with the rat retina in-vivo. Significance: Electroplated 3D honeycomb structures produce a vertically oriented electric field that offers low stimulation threshold, high spatial resolution and high contrast for the retinal implants with pixel sizes down to 20µm in width. Pillar electrodes offer an alternative configuration for extending the stimulation past the debris layers. Electroplating of the 3D structures is compatible with the fabrication process of the flat photovoltaic arrays, thereby enabling much more efficient stimulation than in their original flat configuration.

3.
Proc Natl Acad Sci U S A ; 120(42): e2307380120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37831740

RESUMO

In patients blinded by geographic atrophy, a subretinal photovoltaic implant with 100 µm pixels provided visual acuity closely matching the pixel pitch. However, such flat bipolar pixels cannot be scaled below 75 µm, limiting the attainable visual acuity. This limitation can be overcome by shaping the electric field with 3-dimensional (3-D) electrodes. In particular, elevating the return electrode on top of the honeycomb-shaped vertical walls surrounding each pixel extends the electric field vertically and decouples its penetration into tissue from the pixel width. This approach relies on migration of the retinal cells into the honeycomb wells. Here, we demonstrate that majority of the inner retinal neurons migrate into the 25 µm deep wells, leaving the third-order neurons, such as amacrine and ganglion cells, outside. This enables selective stimulation of the second-order neurons inside the wells, thus preserving the intraretinal signal processing in prosthetic vision. Comparable glial response to that with flat implants suggests that migration and separation of the retinal cells by the walls does not cause additional stress. Furthermore, retinal migration into the honeycombs does not negatively affect its electrical excitability, while grating acuity matches the pixel pitch down to 40 µm and reaches the 27 µm limit of natural resolution in rats with 20 µm pixels. These findings pave the way for 3-D subretinal prostheses with pixel sizes of cellular dimensions.


Assuntos
Poríferos , Neurônios Retinianos , Próteses Visuais , Humanos , Ratos , Animais , Implantação de Prótese , Retina/fisiologia , Visão Ocular , Estimulação Elétrica
4.
Artigo em Inglês | MEDLINE | ID: mdl-37729573

RESUMO

Retinal implants have been developed and implanted to restore vision from outer retinal degeneration, but their performance is still limited due to the poor spatial resolution. To improve the localization of stimulation, microelectrodes in various three-dimensional (3D) shapes have been investigated. In particular, computational simulation is crucial for optimizing the performance of a novel microelectrode design before actual fabrication. However, most previous studies have assumed a uniform conductivity for the entire retina without testing the effect of electrodes placement in different layers. In this study, we used the finite element method to simulate electric fields created by 3D microelectrodes of three different designs in a retina model with a stratified conductivity profile. The three electrode designs included two conventional shapes - a conical electrode (CE) and a pillar electrode (PE); we also proposed a novel structure of pillar electrode with an insulating wall (PEIW). A quantitative comparison of these designs shows the PEIW generates a stronger and more confined electric field with the same current injection, which is preferred for high-resolution retinal prostheses. Moreover, our results demonstrate both the magnitude and the shape of potential distribution generated by a penetrating electrode depend not only on the geometry, but also substantially on the insertion depth of the electrode. Although epiretinal insertions are mainly discussed, we also compared results for subretinal insertions. The results provide valuable insights for improving the spatial resolution of retinal implants using 3D penetrating microelectrodes and highlight the importance of considering the heterogeneity of conductivities in the retina.


Assuntos
Retina , Próteses Visuais , Humanos , Retina/fisiologia , Microeletrodos , Simulação por Computador , Análise de Elementos Finitos , Estimulação Elétrica , Eletrodos Implantados
5.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546971

RESUMO

Photovoltaic subretinal prosthesis (PRIMA) enables restoration of sight via electrical stimulation of the interneurons in degenerated retina, with resolution limited by the 100 µm pixel size. Since decreasing the pixel size below 75 µm in the current bipolar geometry is impossible, we explore the possibility of using smaller pixels based on a novel 3-dimensional honeycomb-shaped design. We assessed the long-term biocompatibility and stability of these arrays in rats by investigating the anatomical integration of the retina with flat and 3D implants and response to electrical stimulation over lifetime - up to 9 months post-implantation in aged rats. With both flat and 3D implants, VEP amplitude decreased after the day of implantation by more than 3-fold, and gradually recovered over about 3 months. With 25 µm high honeycomb walls, the majority of bipolar cells migrate into the wells, while amacrine and ganglion cells remain above the cavities, which is essential for selective network-mediated stimulation of the second-order neurons. Retinal thickness and full-field stimulation threshold with 40 µm-wide honeycomb pixels were comparable to those with planar devices - 0.05 mW/mm2 with 10ms pulses. However, fewer cells from the inner nuclear layer migrated into the 20 µm-wide wells, and stimulation threshold increased over 5 months, before stabilizing at about 0.08 mW/mm2. Such threshold is significantly lower than 1.8 mW/mm2 with a previous design of flat bipolar pixels, confirming the promise of the 3D honeycomb-based approach to high resolution subretinal prosthesis.

6.
Nat Commun ; 13(1): 6627, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333326

RESUMO

Localized stimulation of the inner retinal neurons for high-acuity prosthetic vision requires small pixels and minimal crosstalk from the neighboring electrodes. Local return electrodes within each pixel limit the crosstalk, but they over-constrain the electric field, thus precluding the efficient stimulation with subretinal pixels smaller than 55 µm. Here we demonstrate a high-resolution prosthetic vision based on a novel design of a photovoltaic array, where field confinement is achieved dynamically, leveraging the adjustable conductivity of the diodes under forward bias to turn the designated pixels into transient returns. We validated the computational modeling of the field confinement in such an optically-controlled circuit by in-vitro and in-vivo measurements. Most importantly, using this strategy, we demonstrated that the grating acuity with 40 µm pixels matches the pixel pitch, while with 20 µm pixels, it reaches the 28 µm limit of the natural visual resolution in rats. This method enables customized field shaping based on individual retinal thickness and distance from the implant, paving the way to higher acuity of prosthetic vision in atrophic macular degeneration.


Assuntos
Próteses Visuais , Ratos , Animais , Acuidade Visual , Retina/fisiologia , Visão Ocular , Eletrônica , Estimulação Elétrica
7.
J Neural Eng ; 19(5)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36055219

RESUMO

Objective.PRIMA, the photovoltaic subretinal prosthesis, restores central vision in patients blinded by atrophic age-related macular degeneration (AMD), with a resolution closely matching the 100µm pixel size of the implant. Improvement in resolution requires smaller pixels, but the resultant electric field may not provide sufficient stimulation strength in the inner nuclear layer (INL) or may lead to excessive crosstalk between neighboring electrodes, resulting in low contrast stimulation patterns. We study the approaches to electric field shaping in the retina for prosthetic vision with higher resolution and improved contrast.Approach.We present a new computational framework, Retinal Prosthesis Simulator (RPSim), that efficiently computes the electric field in the retina generated by a photovoltaic implant with thousands of electrodes. Leveraging the PRIMA clinical results as a benchmark, we use RPSim to predict the stimulus strength and contrast of the electric field in the retina with various pixel designs and stimulation patterns.Main results.We demonstrate that by utilizing monopolar pixels as both anodes and cathodes to suppress crosstalk, most patients may achieve resolution no worse than 48µm. Closer proximity between the electrodes and the INL, achieved with pillar electrodes, enhances the stimulus strength and contrast and may enable 24µm resolution with 20µm pixels, at least in some patients.Significance.A resolution of 24µm on the retina corresponds to a visual acuity of 20/100, which is over 4 times higher than the current best prosthetic acuity of 20/438, promising a significant improvement of central vision for many AMD patients.


Assuntos
Membros Artificiais , Próteses Visuais , Estimulação Elétrica , Eletrodos Implantados , Humanos , Desenho de Prótese , Implantação de Prótese/métodos , Retina/fisiologia , Acuidade Visual
8.
J Neural Eng ; 19(5)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36044878

RESUMO

Objective.Retinal prostheses aim at restoring sight in patients with retinal degeneration by electrically stimulating the inner retinal neurons. Clinical trials with patients blinded by atrophic age-related macular degeneration using the PRIMA subretinal implant, a 2 × 2 mm array of 100µm-wide photovoltaic pixels, have demonstrated a prosthetic visual acuity closely matching the pixel size. Further improvement in resolution requires smaller pixels, which, with the current bipolar design, necessitates more intense stimulation.Approach.We examine the lower limit of the pixel size for PRIMA implants by modeling the electric field, leveraging the clinical benchmarks, and using animal data to assess the stimulation strength and contrast of various patterns. Visually evoked potentials measured in Royal College of Surgeons rats with photovoltaic implants composed of 100µm and 75µm pixels were compared to clinical thresholds with 100µm pixels. Electrical stimulation model calibrated by the clinical and rodent data was used to predict the performance of the implant with smaller pixels.Main results.PRIMA implants with 75µm bipolar pixels under the maximum safe near-infrared (880 nm) illumination of 8 mW mm-2with 30% duty cycle (10 ms pulses at 30 Hz) should provide a similar perceptual brightness as with 100µm pixels under 3 mW mm-2irradiance, used in the current clinical trials. Contrast of the Landolt C pattern scaled down to 75µm pixels is also similar under such illumination to that with 100µm pixels, increasing the maximum acuity from 20/420 to 20/315.Significance.Computational modeling defines the minimum pixel size of the PRIMA implants as 75µm. Increasing the implant width from 2 to 3 mm and reducing the pixel size from 100 to 75µm will nearly quadrupole the number of pixels, which should be very beneficial for patients. Smaller pixels of the same bipolar flat geometry would require excessively intense illumination, and therefore a different pixel design should be considered for further improvement in resolution.


Assuntos
Degeneração Retiniana , Neurônios Retinianos , Próteses Visuais , Animais , Estimulação Elétrica/métodos , Humanos , Estimulação Luminosa , Ratos , Retina/fisiologia , Degeneração Retiniana/cirurgia , Roedores
9.
J Neural Eng ; 18(3)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33592588

RESUMO

Objective.To restore central vision in patients with atrophic age-related macular degeneration, we replace the lost photoreceptors with photovoltaic pixels, which convert light into current and stimulate the secondary retinal neurons. Clinical trials demonstrated prosthetic acuity closely matching the sampling limit of the 100µm pixels, and hence smaller pixels are required for improving visual acuity. However, with smaller flat bipolar pixels, the electric field penetration depth and the photodiode responsivity significantly decrease, making the device inefficient. Smaller pixels may be enabled by (a) increasing the diode responsivity using vertical p-n junctions and (b) directing the electric field in tissue vertically. Here, we demonstrate such novel photodiodes and test the retinal stimulation in a vertical electric field.Approach.Arrays of silicon photodiodes of 55, 40, 30, and 20µm in width, with vertical p-n junctions, were fabricated. The electric field in the retina was directed vertically using a common return electrode at the edge of the device. Optical and electronic performance of the diodes was characterizedin-vitro, and retinal stimulation threshold measured by recording the visually evoked potentials in rats with retinal degeneration.Main results.The photodiodes exhibited sufficiently low dark current (<10 pA) and responsivity at 880 nm wavelength as high as 0.51 A W-1, with 85% internal quantum efficiency, independent of pixel size. Field mapping in saline demonstrated uniformity of the pixel performance in the array. The full-field stimulation threshold was as low as 0.057±0.029mW mm-2with 10 ms pulses, independent of pixel size.Significance.Photodiodes with vertical p-n junctions demonstrated excellent charge collection efficiency independent of pixel size, down to 20µm. Vertically oriented electric field provides a stimulation threshold that is independent of pixel size. These results are the first steps in validation of scaling down the photovoltaic pixels for subretinal stimulation.


Assuntos
Degeneração Retiniana , Neurônios Retinianos , Próteses Visuais , Animais , Estimulação Elétrica , Humanos , Ratos , Degeneração Retiniana/terapia , Neurônios Retinianos/fisiologia , Silício
10.
Sci Adv ; 6(37)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917686

RESUMO

Photoreceptors initiate vision by converting photons to electrical activity. The onset of the phototransduction cascade is marked by the isomerization of photopigments upon light capture. We revealed that the onset of phototransduction is accompanied by a rapid (<5 ms), nanometer-scale electromechanical deformation in individual human cone photoreceptors. Characterizing this biophysical phenomenon associated with phototransduction in vivo was enabled by high-speed phase-resolved optical coherence tomography in a line-field configuration that allowed sufficient spatiotemporal resolution to visualize the nanometer/millisecond-scale light-induced shape change in photoreceptors. The deformation was explained as the optical manifestation of electrical activity, caused due to rapid charge displacement following isomerization, resulting in changes of electrical potential and surface tension within the photoreceptor disc membranes. These all-optical recordings of light-induced activity in the human retina constitute an optoretinogram and hold remarkable potential to reveal the biophysical correlates of neural activity in health and disease.


Assuntos
Transdução de Sinal Luminoso , Células Fotorreceptoras Retinianas Cones , Humanos , Transdução de Sinal Luminoso/fisiologia , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Tomografia de Coerência Óptica , Visão Ocular
11.
J Neural Eng ; 17(4): 045008, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32613948

RESUMO

Objective: To restore sight in atrophic age-related macular degeneration, the lost photoreceptors can be replaced with electronic implants, which replicate their two major functions: (1) converting light into an electric signal, and (2) transferring visual information to the secondary neurons in the retinal neural network­the bipolar cells (BC). We study the selectivity of BC activation by subretinal implants and dynamics of their response to pulsatile waveforms in order to optimize the electrical stimulation scheme such that retinal signal processing with 'electronic photoreceptors' remains as close to natural as possible. Approach: A multicompartmental model of a BC was implemented to simulate responses of the voltage-gated calcium channels and subsequent synaptic vesicle release under continuous and pulsatile stimuli. We compared the predicted response under various frequencies, pulse durations, and alternating gratings to the corresponding experimental measurements. In addition, electric field was computed for various electrode configurations in a 3-d finite element model to assess the stimulation selectivity via spatial confinement of the field. Main results: The modeled BC-mediated retinal responses were, in general, in good agreement with previously published experimental results. Kinetics of the calcium pumps and of the neurotransmitter release in ribbon synapses, which underpin the BC's temporal filtering and rectifying functions, allow mimicking the natural BC response with high frequency pulsatile stimulation, thereby preserving features of the retinal signal processing, such as flicker fusion, adaptation to static stimuli and non-linear summation of subunits in receptive field. Selectivity of the BC stimulation while avoiding direct activation of the downstream neurons (amacrine and ganglion cells­RGCs) is improved with local return electrodes. Significance: If the retinal neural network is preserved to a large extent in age-related macular degeneration, selective stimulation of BCs with proper spatial and temporal modulation of the extracellular electric field may retain many features of the natural retinal signal processing and hence allow highly functional restoration of sight.


Assuntos
Retina , Células Ganglionares da Retina , Estimulação Elétrica , Eletrônica , Sinapses
12.
J Neural Eng ; 17(3): 035001, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32299074

RESUMO

OBJECTIVE: Avoidance of the adverse electrochemical reactions at the electrode-electrolyte interface defines the voltage safety window and limits the charge injection capacity (CIC) of an electrode material. For an electrode that is not ideally capacitive, the CIC depends on the waveform of the stimulus. We study the modeling of the charge injection dynamics to optimize the waveforms for efficient neural stimulation within the electrochemical safety limits. APPROACH: The charge injection dynamics at the electrode-electrolyte interface is typically characterized by the electrochemical impedance spectrum, and is often approximated by discrete-element circuit models. We compare the modeling of the complete circuit, including a non-linear driver such as a photodiode, based on the harmonic-balance (HB) analysis with the analysis based on various - (discrete-element) approximations. To validate the modeling results, we performed experiments with iridium-oxide electrodes driven by a current source with diodes in parallel, which mimics a photovoltaic circuit. MAIN RESULTS: Application of HB analysis based on a full impedance spectrum eliminates the complication of finding the discrete-element circuit model in traditional approaches. HB-based results agree with the experimental data better than the discrete-element circuit. HB technique can be applied not only to demonstrate the circuit response to periodic stimulation, but also to describe the initial transient behavior when a burst waveform is applied. SIGNIFICANCE: HB-based circuit analysis accurately describes the dynamics of electrode-electrolyte interfaces and driving circuits for all pulsing schemes. This allows optimizing the stimulus waveform to maximize the CIC, based on the impedance spectrum alone.


Assuntos
Eletrólitos , Impedância Elétrica , Estimulação Elétrica , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...