Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Toxicol Res (Camb) ; 12(3): 457-467, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37397922

RESUMO

Pancreatic ductal adenocarcinoma, one of the deadliest tumors of the digestive tract, is a difficult and invasive malignancy. Current treatment for pancreatic ductal adenocarcinoma mainly depends on surgery combined with radiotherapy and chemotherapy, which, however, often resulting in questionable curative effect. Therefore, new targeted therapies are needed in future treatment. We first interfered with hsa_circ_0084003 expression in pancreatic ductal adenocarcinoma cells, and further studied how hsa_circ_0084003 functioned in regulating pancreatic ductal adenocarcinoma cell aerobic glycolysis and epithelial-mesenchymal transition, and also evaluated the regulatingeffect of hsa_circ_0084003 on hsa-miR-143-3p and its target DNA methyltransferase 3A. Hsa_circ_0084003 knockdown could notably inhibit the aerobic glycolysis and epithelial-mesenchymal transition of pancreatic ductal adenocarcinoma cells. Mechanistically, hsa_circ_0084003 could regulate its downstream target DNA methyltransferase 3A by binding to hsa-miR-143-3p, and overexpression of hsa_circ_0084003 could reverse the anticarcinogenic effect of hsa-miR-143-3p on aerobic glycolysis and epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma cells. Hsa_circ_0084003, as a carcinogenic circular RNA, regulated its downstream target DNA methyltransferase 3A to promote pancreatic ductal adenocarcinoma cell aerobic glycolysis and epithelial-mesenchymal transition through sponging hsa-miR-143-3p. Therefore, hsa_circ_0084003 could be studied as a possible therapeutic target regarding pancreatic ductal adenocarcinoma.

3.
Toxicol Res (Camb) ; 12(3): 425-432, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37397924

RESUMO

Backgound: Pancreatic cancer (PC) is one of the deadliest cancers worldwide, and cell proliferation and angiogenesis play an important role in its occurrence and development. High levels of lncRNANORAD have been detected in many tumors, including PC, yet the effect and mechanism of lncRNA NORAD on PC cell angiogenesis are unexplored. Methods: qRT.PCR was applied to quantify lncRNA NORAD and miR-532-3p expression in PC cells, and a dual luciferase reporter gene was used to verify the targeting effects of NORAD, miR-532-3p and Nectin-4. Then, we regulated NORAD and miR-532-3p expression in PC cells and detected their effects on PC cell proliferation and angiogenesis using cloning experiments and HUVEC tube formation experiments. Results: LncRNA NORAD was upregulated and miR-532-3p was downregulated in PC cells compared with normal cells. Knockdown of NORAD inhibited PC cell proliferation and angiogenesis. LncRNA NORAD and miR-532-3p competitively bound to promote the expression of the miR-532-3p target gene Nectin-4, thereby promoting proliferation and angiogenesis of PC cells in vitro. Conclusion: LncRNA NORAD promotes the proliferation and angiogenesis of PC cells by regulating the miR-532-3p/Nectin-4 axis, which may be a potential biological target in the diagnosis and treatment of clinical PC.

4.
Mol Pharm ; 20(8): 4138-4152, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37358225

RESUMO

Lipid nanoparticle (LNP) delivery systems are widely used in the delivery of small-molecule drugs and nucleic acids. In this study, we prepared LNP-miR-155 by lipid nanomaterial technology and investigated the effects of LNP-miR-155 on ß-catenin/transcription factor 4 (TCF4)/solute carrier family 31 member 1/copper transporter 1 (SLC31A1/CTR1) signaling and copper transport in colorectal cancer. For this, we used an LNP-miR-155 cy5 inhibitor and LNP-miR-155 cy5 mimics for the transfection of HT-29/SW480 cells. The transfection efficiency and uptake efficiency were detected by immunofluorescence. Relevant cell assays confirmed that the LNP-miR-155 cy5 inhibitor mediates the regulation of copper transport through the ß-catenin/TCF4/SLC31A1 axis. The LNP-miR-155 cy5 inhibitor reduced cell proliferation, migration, and colony formation and promoted cell apoptosis. We also confirmed that miR-155 downregulates HMG box-containing protein 1 (HBP1) and adenomatous polyposis coli (APC) in cells and activates the function of ß-catenin/TCF4 signaling. In addition, we found that the copper transporter, SLC31A1, is highly expressed in colorectal cancer cells. Furthermore, we also found that the complex ß-catenin/TCF4 promotes the transcription of SLC31A1 by binding to its promoter region, which sustains the transport of copper from the extracellular region to the intracellular region and increases the activities of Cu2+-ATPase and superoxide dismutase (SOD). In summary, the LNP-miR-155 cy5 inhibitor regulates ß-catenin/TCF4 by downregulating SLC31A1-mediated copper transport and intracellular copper homeostasis.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , beta Catenina/metabolismo , Fator de Transcrição 4/metabolismo , Proteínas de Transporte de Cobre/metabolismo , Cobre/farmacologia , Cobre/metabolismo , Neoplasias Colorretais/genética , MicroRNAs/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Transportador de Cobre 1/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Repressoras/metabolismo
5.
Dis Markers ; 2022: 8081246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783013

RESUMO

Colorectal cancer (CRC) is the third most common form of malignant tumor and is characterized by high rates of proliferation and metastases. Circular RNAs (circRNAs) are a form of noncoding and closed loop RNA molecules and play vital roles in the progression of various types of cancer in humans. Here, we used circRNA microarray sequencing technology to analyze the different circRNAs between CRC tissues and normal tissues and explore the role of circIFT80 in progression of colorectal cancer. In this present study, we found that circIFT80 was abnormally overexpression in colorectal cancer tissues and tumor cells. While knockout circIFT80 in HT29 cell or SW480 cells, the proliferation, and migration of the cells were inhibited, the cell cycle was arrested in G2/M phase, and the cell apoptosis was increased. And then, we found circIFT80-positive correlation with CTNNB1 (ß-catenin) by sponging miR-142, miR-568, and miR-634 upregulated the gene expression. These miRNAs which targeted ß-catenin mRNA were confirmed by dual-luciferase reporter system and RNA-pulldown. In addition, xenograft tumor experiments showed that circIFT80 accelerated the tumorigenesis of CRC in vivo. In conclusion, our work reveals the impacts of circIFT80 as ceRNA in the progression of CRC, by which sponging miR-142, miR-568, and miR-634 enhanced the expression levels of ß-catenin and activation Wnt/ß-catenin pathway. Collectively, our data indicate that circIFT80 serves as an oncogene in CRC and represents a novel candidate for diagnosis and treatment.


Assuntos
Neoplasias Colorretais , MicroRNAs , Neoplasias Colorretais/genética , Humanos , MicroRNAs/genética , RNA Circular/genética , Via de Sinalização Wnt/genética , beta Catenina/genética
6.
Onco Targets Ther ; 14: 4645-4658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511934

RESUMO

BACKGROUND: Increasing evidence shows that circular RNAs (circRNAs) play a key role in the development of colorectal cancer (CRC). An interesting candidate RNA in this context is hsa-circRNA-0067835 (circIFT80), but its network of actions is still unclear. METHODS: Big data mining technology was used to explore the downstream microRNAs (miRNA) and messenger RNAs (mRNA) of the circIFT80 network. A regulatory network, comprising circIFT80 and its corresponding miRNAs and mRNAs, was derived to preliminarily explore the potential mechanism of circIFT80 in CRC. Finally, the proposed regulatory network was experimentally verified at the cellular level. RESULTS: A total of 6 miRNAs were screened, of which hsa-miR-197-3p, hsa-miR-370-3p and hsa-miR-377-5p may be the most potential downstream miRNAs of hsa-circRNA-0067835 in CRC. A total of 74 up-regulated genes with opposite miRNA expression were selected for subsequent verification. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases revealed that the target genes occurred more frequently in cancer-related pathways. In addition, protein-protein interaction (PPI) analysis of the target genes revealed a set of involved genes from which the hubTop 10 genes were selected for further analysis. Moreover, circRNA-miRNA-hubTop 10 mRNA networks were constructed. According to this analysis, circIFT80 simultaneously regulates hsa-miR-197-3p, hsa-miR-370-3p, and hsa-miR-377-5p, among which hsa-miR-370-3p seems to be associated with further genes that may be relevant to CRC development. Therefore, the proposed circIFT80/hsa-miR-370-3p/WNT7B, SLC1A5, RCBTB1 and COL6A6 signal axes were subjected to experimental verification. It could be shown that circIFT80 was up-regulated in CRC tissues. The circIFT80 was able to inhibit apoptosis and promote proliferation, migration and invasion. Moreover, circIFT80 inhibited the expression of hsa-miR-370-3p and promoted the expression of COL6A6, RCBTB1, SLC1A5 and WNT7B in CRC cell lines. Dual luciferase reporter assays further validated that circIFT80 is able to bind to hsa-miR-370-3p which in turn targets WNT7B. CONCLUSION: The circIFT80 may play a role in carcinogenesis through the new circIFT80/hsa-miR-370-3p/WNT7B signal axis. These findings may provide potential biomarkers and therapeutic targets for the treatment of CRC.

7.
Front Oncol ; 10: 584835, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363014

RESUMO

BACKGROUND: It is well known that neoadjuvant radiotherapy could reduce local recurrence followed by surgical resection. However, evidence about oncologic efficacy of radiotherapy and survival benefit of adjuvant chemotherapy after neoadjuvant radiotherapy is still lacking. METHODS: This retrospective propensity score-matched cohort study identified patients with pathologically confirmed rectal cancer and receiving surgery with curative intent from the Surveillance, Epidemiology, and End Results database from 2004 through 2014. Overall survival was compared using the stratified log-rank test. Multivariate Cox regression analysis was used for identifying risk factor and developing prediction nomogram. RESULTS: A total of 22,008 (11,004 for each group) propensity-matched patients were identified. In the context of receiving adjuvant chemotherapy after surgical resection, there was no significant difference in terms of overall survival between surgery alone group and neoadjuvant radiotherapy and surgery group, whether for stage I (log-rank test p = 0.467), stage II (log-rank test p = 0.310), or stage III (p = 0.994). In case of receiving a prior combination therapy of neoadjuvant radiotherapy and surgery, the following adjuvant chemotherapy could significantly improve overall survival for patients with stage I (log-rank test p <0.001), stage II (log-rank test p = 0.038), and stage III (log-rank test p = 0.014). Nomogram integrating clinicopathologic factors was developed to predict survival benefit associated with neoadjuvant radiotherapy. Calibration and ROC curves validated promising performance for the nomogram. CONCLUSION: Patients with rectal cancer underwent neoadjuvant radiotherapy yield acceptable outcomes and are more likely to benefit from adjuvant chemotherapy in terms of overall survival. These data would be evidential for advocating consistency in guideline adherence to the use of adjuvant chemotherapy after neoadjuvant radiotherapy.

8.
Hepatol Res ; 45(3): 326-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24827154

RESUMO

AIM: Cancer is not only influenced by specific tumor cells but also by the stromal microenvironment. Upon liver damage, activated hepatic stellate cells (aHSC) become highly proliferative myofibroblast-like cells and are thought to secrete molecules that influence development of hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of aHSC in the development of HCC. METHODS: To assess if aHSC secreted factor(s) that promote microvascular endothelial cell (MEC) tube formation, MEC were plated with aHSC-conditioned medium and tube formation analyzed by light microscopy. An established transendothelial migration assay with MEC was used to evaluate the role of aHSC in migration and metastasis. A novel in vitro and in vivo orthotopic mouse HCC tumor model was used to investigate angiogenic, proliferative and metastatic activity of aHSC. RESULTS: We found that aHSC promoted angiogenesis both in vitro and in vivo through vascular endothelial growth factor (VEGF). aHSC-conditioned medium increased the ability of MEC to form tubes which was dependent upon aHSC-secreted VEGF. In addition, HCC orthogenic tumors derived from co-injection of H22 cells plus aHSC into the hepatic lobes of mice had greater cell proliferation and vascularization, as evaluated by the presence of CD34 and VEGF expression, than tumors resulting from H22 injections alone. aHSC also migrated from the primary tumor to sites of metastasis. CONCLUSION: Our findings support aHSC playing multiple roles in HCC development and metastasis.

9.
Mol Med Rep ; 11(1): 691-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25333351

RESUMO

Angiogenesis has an important function in the proliferation and metastasis of hepatocellular carcinoma (HCC) under a hypoxic tumor microenvironment. Activated hepatic stellate cells (HSCs) infiltrate the stroma of liver tumors and potently increase angiogenesis through tumor-stromal interactions, however, the exact mechanism by which this occurs is unknown. The present study aimed to investigate the paracrine effects of HCC-derived platelet-derived growth factor-BB (PDGF-BB) on HSCs under hypoxic conditions. It was demonstrated that PDGF-BB expression was markedly increased in HepG2 cells exposed to hypoxia. Conditioned medium (CM) from HepG2 cells stimulated LX-2 cell proliferation, migration and vascular endothelial growth factor-A (VEGF-A) expression. It was then determined that blocking PDGF-BB expression in HepG2-CM abolished these effects on LX-2 cells. The ectopic expression of PDGF-BB in HepG2 cells strongly affected LX-2 cell proliferation, migration and VEGF-A expression. In conclusion, the present study suggests that hypoxia-induced PDGF-BB secretion by HCC cells stimulates HSCs to accumulate and proliferate in the tumor stroma and the enhanced VEGF-A expression in HSCs may promote HCC angiogenesis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Células Estreladas do Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Becaplermina , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Expressão Gênica , Humanos , Hipóxia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-sis/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...