Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(11): 774, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008826

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a type of kidney cancer that is both common and aggressive, with a rising incidence in recent decades. Hypoxia is a key factor that plays a vital role in the tumorigenesis and metastasis of malignancy. However, the precise mechanisms of hypoxia driving ccRCC progression were not totally uncovered. Our study found that hypoxia level was elevated in ccRCC and might be an independent risk factor of prognosis in ccRCC patients. We identified a key protein PLOD2 was induced under hypoxic conditions and strongly associated with poor prognosis in ccRCC patients. When PLOD2 was depleted, the proliferation and migration of ccRCC cells were reduced in vitro and in vivo, while overexpression of PLOD2 had the opposite effect. Mechanically, the study further revealed that PLOD2 was transcriptionally activated by HIF1A, which binds to a specific promoter region of the PLOD2 gene. PLOD2 was also shown to interact with EGFR, leading to the phosphorylation of the receptor. Furthermore, PLOD2 was responsible for binding to the extracellular domain of EGFR, which ultimately activated the AKT signaling pathway, thus promoting the malignant progression of ccRCC. Treatment with the PLOD2 inhibitor Minoxidil significantly suppressed ccRCC progression by inactivating the EGFR/AKT signaling axis. In summary, the findings of this study shed light on the molecular mechanisms behind PLOD2 expression in ccRCC and suggest that it may serve as a potential predictor and therapeutic target for the clinical prognosis and treatment of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células/genética , Neoplasias Renais/metabolismo , Hipóxia/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética
2.
Cancers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497260

RESUMO

SCL/TAL1 interrupting locus (STIL) regulates centriole replication and causes chromosome instability, which is closely related to malignant tumors. The purpose of our study was to investigate the role of STIL in bladder cancer (BC) tumorigenesis for the first time. The public database indicated that STIL is highly expressed and correlated with the cell cycle in BC. Immunohistochemistry staining showed that STIL expression is significantly elevated in BC tissues compared with paracancer tissues. CRISPR-Cas9 gene editing technology was used to induce BC cells to express STIL-specific sgRNA, revealing a significantly delayed growth rate in STIL knockout BC cells. Moreover, cell cycle arrest in the G0/G1 phase was triggered by decreasing STIL, which led to delayed BC cell growth in vitro and in vivo. Mechanically, STIL knockout inhibited the PI3K/AKT/mTOR pathway and down-regulated the expression of c-myc. Furthermore, SC79 (AKT activating agent) partially reversed the inhibitory effects of STIL knockout on the proliferation and migration of BC cells. In conclusion, STIL enhanced the PI3K/AKT/mTOR pathway, resulting in increased expression of c-myc, ultimately promoting BC occurrence and progression. These results indicate that STIL might be a potential target for BC patients.

3.
Biochem Biophys Res Commun ; 622: 101-107, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35843088

RESUMO

The non-SMC condensin I complex subunit G (NCAPG) is a subunit of the condensin complex, many studies have shown that NCAPG is aberrantly expressed in different tumors and closely associated with poor prognosis, but its role in bladder cancer is unclear. In this paper, we found that NCAPG expression was upregulated in bladder cancer in tumor-related databases, and further verified the expression of NCAPG in bladder cancer tissues as well as bladder cancer cell lines by tissue microarray, qPCR, and WB. Next, we explored the changes in bladder cancer cell proliferation as well as migration after NCAPG knockdown by cell growth curve, colony formation, soft agar assay, and xenograft model. Finally, we examined the changes in downstream signaling pathways after NCAPG knockdown using RNA-Seq, and we found that the NF-κB signaling pathway was inhibited with NCAPG gene knockdown, which was verified by luciferase reporter assay as well as WB. In conclusion, our results illustrate that NCAPG knockdown can inhibit the proliferation of bladder cancer cells through the NF-κB signaling pathway. This finding demonstrates that NCAPG could be a potential target for the treatment of bladder cancer.


Assuntos
NF-kappa B , Neoplasias da Bexiga Urinária , Animais , Carcinogênese/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...