Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 10(3): e1004225, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675767

RESUMO

Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses. Our systematic studies identify an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy. Notably, we show that ILPs regulate each other transcriptionally, uncovering an ILP-to-ILP regulatory network that underlies the combinatorial phenotypic coding by the ILP family. Extensive analyses of genetic interactions among ILPs reveal how their signals are integrated. A combined analysis of these functional and regulatory ILP interactions identifies local genetic circuits that act in parallel and interact by crosstalk, feedback and compensation. This organization provides emergent mechanisms for phenotypic specificity and graded regulation for the combinatorial phenotypic coding we observe. Our findings also provide insights into how large hormonal networks regulate diverse traits.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Insulina/genética , Receptor de Insulina/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Redes Reguladoras de Genes , Insulina/metabolismo , Longevidade/genética , Fenótipo , Receptor de Insulina/metabolismo , Transdução de Sinais/genética , Somatomedinas/genética , Somatomedinas/metabolismo
2.
Neuron ; 77(3): 572-85, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23395381

RESUMO

The insulin/insulin-like peptides (ILPs) regulate key events in physiology, including neural plasticity. However, the cellular and circuit mechanisms whereby ILPs regulate learning remain largely unknown. Here, we characterize two ILPs that play antagonistic roles in aversive olfactory learning of C. elegans. We show that the ILP ins-6 acts from ASI sensory neurons to enable learning by repressing the transcription of another ILP, ins-7, specifically in URX neurons. A high level of INS-7 from URX disrupts learning by antagonizing the insulin receptor-like homolog DAF-2 in the postsynaptic neurons RIA, which play an essential role in the neural circuit underlying olfactory learning. We also show that increasing URX-generated INS-7 and loss of INS-6, both of which abolish learning, alter RIA neuronal property. Together, our results reveal an "ILP-to-ILP" pathway that links environment-sensing neurons, ASI and URX, to the key neuron, RIA, of a network that underlies olfactory plasticity and modulates its activity.


Assuntos
Aprendizagem da Esquiva/fisiologia , Insulina/química , Condutos Olfatórios/fisiologia , Hormônios Peptídicos/fisiologia , Transdução de Sinais/fisiologia , Olfato/efeitos dos fármacos , Aminoácidos , Análise de Variância , Animais , Animais Geneticamente Modificados , Aprendizagem da Esquiva/efeitos dos fármacos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , Comportamento de Escolha/fisiologia , Relação Dose-Resposta a Droga , Embrião não Mamífero , Genótipo , Proteínas de Fluorescência Verde/genética , Estimativa de Kaplan-Meier , Mutação/genética , Odorantes , Condutos Olfatórios/citologia , Hormônios Peptídicos/classificação , Hormônios Peptídicos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/efeitos dos fármacos
3.
Development ; 138(6): 1183-93, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21343369

RESUMO

An insulin-like signaling pathway mediates the environmental influence on the switch between the C. elegans developmental programs of reproductive growth versus dauer arrest. However, the specific role of endogenous insulin-like peptide (ILP) ligands in mediating the switch between these programs remains unknown. C. elegans has 40 putative insulin-like genes, many of which are expressed in sensory neurons and interneurons, raising the intriguing possibility that ILPs encode different environmental information to regulate the entry into, and exit from, dauer arrest. These two developmental switches can have different regulatory requirements: here we show that the relative importance of three different ILPs varies between dauer entry and exit. Not only do we find that one ILP, ins-1, ensures dauer arrest under harsh environments and that two other ILPs, daf-28 and ins-6, ensure reproductive growth under good conditions, we also show that daf-28 and ins-6 have non-redundant functions in regulating these developmental switches. Notably, daf-28 plays a more primary role in inhibiting dauer entry, whereas ins-6 has a more significant role in promoting dauer exit. Moreover, the switch into dauer arrest surprisingly shifts ins-6 transcriptional expression from a set of dauer-inhibiting sensory neurons to a different set of neurons, where it promotes dauer exit. Together, our data suggest that specific ILPs generate precise responses to dauer-inducing cues, such as pheromones and low food levels, to control development through stimulus-regulated expression in different neurons.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Somatomedinas/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Insulina/química , Insulina/genética , Insulina/metabolismo , Insulina/fisiologia , Insulinas , Longevidade/genética , Longevidade/fisiologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/fisiologia , Hormônios Peptídicos/química , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/fisiologia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/fisiologia , Transdução de Sinais , Somatomedinas/genética , Somatomedinas/metabolismo , Sobrevida/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...