Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(12)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34936997

RESUMO

In recent years, the discovery of 'magic angle' graphene has given new inspiration to the formation of heterojunctions. Similarly, the use of hexagonal boron nitride, known as white graphene, as a substrate for graphene devices has more aroused great interest in the graphene/hexagonal boron nitride heterostructure system. Based on the first principles method of density functional theory, the band structure, density of states, Mulliken population, and differential charge density of a tightly packed model of twisted graphene/hexagonal boron nitride/graphene sandwich structure have been studied. Through the establishment of heterostructure models twisted bilayer-graphene inserting hBN with different twisted angles, it was found that the band gap, Mulliken population, and charge density, exhibited specific evolution regulars with the rotation angle of the upper graphene, showing novel electronic properties and realizing metal-insulator phase transition. We find that the particular value of the twist angle at which the metal-insulator phase transition occurs and propose a rotational regulation mechanism with angular periodicity. Our results have guiding significance for the practical application of heterojunction electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...