Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhen Jiu ; 43(11): 1239-1245, 2023 Sep 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37986247

RESUMO

OBJECTIVES: To compare the effects of electroacupuncture (EA) with different time intervals on corticospinal excitability of the primary motor cortex (M1) and the upper limb motor function in healthy subjects and observe the after-effect rule of acupuncture. METHODS: Self-comparison before and after intervention design was adopted. Fifteen healthy subjects were included and all of them received three stages of trial observation, namely EA0 group (received one session of EA), EA6h group (received two sessions of EA within 1 day, with an interval of 6 h) and EA48h group (received two sessions of EA within 3 days, with an interval of 48 h). The washout period among stages was 1 week. In each group, the needles were inserted perpendicularly at Hegu (LI 4) on the left side, 23 mm in depth and at a non-acupoint, 0.5 cm nearby to the left side of Hegu (LI 4), separately. Han's acupoint nerve stimulator (HANS-200A) was attached to these two needles, with continuous wave and the frequency of 2 Hz. The stimulation intensity was exerted higher than the exercise threshold (local muscle twitching was visible, and pain was tolerable by healthy subjects, 1-2 mA ). The needles were retained for 30 min. Using the single pulse mode of transcranial magnetic stimulation (TMS) technique, before the first session of EA (T0) and at the moment (T1), in 2 h (T2) and 24 h (T3) after the end of the last session of EA, on the left first dorsal interosseous muscle, the amplitude, latency (LAT), resting motor threshold (rMT) of motor evoked potentials (MEPs) and the completion time of grooved pegboard test (GPT) were detected. Besides, in the EA6h group, TMS was adopted to detect the excitability of M1 (amplitude, LAT and rMT of MEPs) before the last session of EA (T0*). RESULTS: The amplitude of MEPs at T1 and T2 in the EA0 group, at T0* in the EA6h group and at T1, T2 and T3 in the EA48h group was higher when compared with the value at T0 in each group separately (P<0.001). At T1, the amplitude of MEPs in the EA0 group and the EA48h group was higher than that in the EA6h group (P<0.001, P<0.01); at T2, it was higher in the EA0 group when compared with that in the EA6h group (P<0.01); at T3, the amplitude in the EA0 group and the EA6h group was lower than that of the EA48h group (P<0.001). The LAT at T1 was shorter than that at T0 in the three groups (P<0.05), and the changes were not obvious at the rest time points compared with that at T0 (P > 0.05). The GPT completion time of healthy subjects in the EA0 group and the EA48h group at T1, T2 and T3 was reduced in comparison with that at T0 (P<0.001). The completion time at T3 was shorter than that at T0 in the EA6h group (P<0.05); at T2, it was reduced in the EA48h group when compared with that of the EA6h group (P<0.05). There were no significant differences in rMT among the three groups and within each group (P>0.05). CONCLUSIONS: Under physiological conditions, EA has obvious after-effect on corticospinal excitability and upper limb motor function. The short-term interval protocol (6 h) blocks the after-effect of EA to a certain extent, while the long-term interval protocol (48 h) prolongs the after-effect of EA.


Assuntos
Eletroacupuntura , Córtex Motor , Humanos , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Extremidade Superior , Exercício Físico , Músculo Esquelético/fisiologia
2.
Int J Hematol ; 117(2): 236-250, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36399285

RESUMO

Drug resistance is a major obstacle to the successful treatment of cancer. The role of the miR-106b-25 cluster in drug resistance of haematologic malignancies has not yet been elucidated. Here, we show that the miR-106b-25 cluster mediates resistance to therapeutic agents with structural and mechanistic dissimilarity in vitro and in vivo. RNA sequencing data revealed that overexpression of the miR-106b-25 cluster or its individual miRNAs resulted in downregulation of multiple key regulators of apoptotic pathways. Luciferase reporter assay identified TP73 as a direct target of miR-93 and miR-106b, BAK1 as a direct target of miR-25 and CASP7 as a direct target of all three miRNAs. We also showed that inhibitors of the miR-106b-25 cluster and BCL-2 exert synergistic effects on apoptosis induction in primary myeloid leukaemic cells. Thus, the members of the miR-106b-25 cluster may jointly contribute to myeloid leukaemia drug resistance by inactivating multiple apoptotic genes. Targeting this cluster could be a promising combination strategy in patients resistant to therapeutic agents that induce apoptosis.


Assuntos
Leucemia Mieloide , MicroRNAs , Neoplasias , Humanos , MicroRNAs/metabolismo , Apoptose/genética , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/genética , Resistência a Medicamentos , Linhagem Celular Tumoral , Proliferação de Células
3.
Sensors (Basel) ; 22(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36502004

RESUMO

A wireless sensor network (WSN) consists of a very large number of sensors which are deployed in the specific area of interest. A sensor is an electronic device equipped with a small processor and has a small-capacity memory. The WSN has the functions of low cost, easy deployment, and random reconfiguration. In this paper, an energy-efficient load balancing tree-based data aggregation scheme (LB-TBDAS) for grid-based WSNs is proposed. In this scheme, the sensing area is partitioned into many cells of a grid and then the sensor node with the maximum residual energy is elected to be the cell head in each cell. Then, the tree-like path is established by using the minimum spanning tree algorithm. In the tree construction, it must meet the three constraints, which are the minimum energy consumption spanning tree, the network depth, and the maximum number of child nodes. In the data transmission process, the cell head is responsible for collecting the sensing data in each cell, and the collected data are transmitted along the tree-like path to the base station (BS). Simulation results show that the total energy consumption of LB-TBDAS is significantly less than that of GB-PEDAP and PEDAP. Compared to GB-PEDAP and PEDAP, the proposed LB-TBDAS extends the network lifetime by more than 100%. The proposed LB-TBDAS can avoid excessive energy consumption of sensor nodes during multi-hop data transmission and can also avoid the hotspot problem of WSNs.


Assuntos
Conservação de Recursos Energéticos , Agregação de Dados , Criança , Humanos , Sistemas Computacionais , Coleta de Dados , Eletrônica
4.
Am J Hematol ; 96(11): 1385-1395, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339537

RESUMO

Acute myeloid leukemia (AML) is an aggressive cancer of myeloid cells with high levels of heterogeneity and great variability in prognostic behaviors. Cytogenetic abnormalities and genetic mutations have been widely used in the prognostic stratification of AML to assign patients into different risk categories. Nevertheless, nearly half of AML patients assigned to intermediate risk need more precise prognostic schemes. Here, 336 differentially expressed genes (DEGs) between AML and control samples and 206 genes representing the intratumor heterogeneity of AML were identified. By applying a LASSO Cox regression model, we generated a 4-mRNA prognostic signature comprising KLF9, ENPP4, TUBA4A and CD247. Higher risk scores were significantly associated with shorter overall survival, complex karyotype, and adverse mutations. We then validated the prognostic value of this 4-mRNA signature in two independent cohorts. We also proved that incorporation of the 4-mRNA-based signature in the 2017 European LeukemiaNet (ELN) risk classification could enhance the predictive accuracy of survival in patients with AML. Univariate and multivariate analyses showed that this signature was independent of traditional prognostic factors such as age, WBC count, and unfavorable cytogenetics. Finally, the molecular mechanisms underlying disparate outcomes in high-risk and low-risk AML patients were explored. Therefore, our findings suggest that the 4-mRNA signature refines the risk stratification and prognostic prediction of AML patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/genética , RNA Mensageiro/genética , Transcriptoma , Complexo CD3/genética , Humanos , Estimativa de Kaplan-Meier , Fatores de Transcrição Kruppel-Like/genética , Leucemia Mieloide Aguda/diagnóstico , Diester Fosfórico Hidrolases/genética , Prognóstico
5.
Cancer Lett ; 519: 78-90, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34186160

RESUMO

Additional sex combs-like 1 (ASXL1) is frequently mutated in a variety of myeloid malignancies, resulting in expression of a C-terminal-truncated ASXL1 protein that confers gain of function on the ASXL1-BAP1 deubiquitinase (DUB) complex. Several studies have reported that hyperactivity of BRCA-1-associated protein 1 (BAP1) in deubiquitinating mono-ubiquitinated histone H2AK119 is one of the critical molecular mechanisms in ASXL1 mutation-driven myeloid malignancies in mice. In this study, we found that human haematopoietic stem and progenitor cells (HSPCs) overexpressing truncated ASXL1 (ASXL1Y591X) developed an MDS-like phenotype similar to that induced by overexpression of BAP1. We then used shRNAs targeting BAP1 in ASXL1Y591X-overexpressing HSPCs and primary leukaemia cells with ASXL1 mutation, demonstrating that reduced BAP1 expression can partially rescue the pathological consequences. RNA sequencing and chromatin immunoprecipitation coupled with quantitative PCR analyses revealed that reduced BAP1 expression suppressed upregulation of the transcription factors AP-1 and EGR1/2, as well as myeloid dysplasia-associated genes, by retarding H2AK119Ub removal caused by ASXL1 mutation. This study indicates that targeting the hyperactive ASXL1-BAP1 DUB complex can attenuate mutant ASXL1-driven myeloid malignancies in human.


Assuntos
Células-Tronco Hematopoéticas/patologia , Mutação/genética , Células Mieloides/patologia , Neoplasias/genética , Neoplasias/patologia , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/métodos , Células HEK293 , Humanos , Células K562 , Ativação Transcricional/genética , Ubiquitina/genética , Ubiquitinação/genética
6.
Nanoscale Horiz ; 5(10): 1420-1429, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32856666

RESUMO

Sb nanosheets, also known as antimonene, have received ever-growing consideration as a promising new type of two-dimensional (2D) material due to their many attractive properties. However, how their nonlinear optical (NLO) properties are affected by their nanosheet structure and measurement conditions remains unclear. Herein, we report a successful size-selective production method for Sb nanosheets, which is based on a combination of lithium ion intercalation, solvent exfoliation and size selection centrifugation. This high-yield and size-selective preparation method enables fundamental investigation on the relation of the intrinsic optical properties of Sb nanosheets. Nanosecond Z-scan measurements revealed a unique size-dependent broadband NLO response. When the average size is reduced from 3 micrometers to 50 nanometers, the Sb nanosheets exhibit a clear transition from saturable absorption to reversed saturable absorption. Ultrafast transient absorption spectroscopic investigation indicated that exciton cooling is significantly faster in a small nanosheet than in large ones, revealing that the different exciton relaxation dynamic plays key roles in the distinct size-tunable nonlinear optical response. This work paves new ways towards the mass production and practical application of antimonene.

7.
Small ; 16(39): e2002808, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32851802

RESUMO

As stated in the classic Kirchhoff's circuit laws, the total conductance of two parallel channels in an electronic circuit is the sum of the individual conductance. However, in molecular circuits, the quantum interference (QI) between the individual channels may lead to apparent invalidity of Kirchhoff's laws. Such an effect can be very significant in single-molecule circuits consisting of partially overlapped multiple transport channels. Herein, an investigation on how the molecular circuit conductance correlates to the individual channels is conducted in the presence of QI. It is found that the conductance of multi-channel circuit consisting of both constructive and destructive QI is significantly smaller than the addition of individual ones due to the interference between channels. In contrast, the circuit consisting of destructive QI channels exhibits an additive transport. These investigations provide a new cognition of transport mechanism and manipulation of transport in multi-channel molecular circuits.

8.
J Cancer Res Clin Oncol ; 144(6): 1065-1077, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29594337

RESUMO

PURPOSE: Acute myeloid leukemia (AML) is a heterogeneous disease with poor outcomes. Despite increased evidence shows that dysregulation of histone modification contributes to AML, specific drugs targeting key histone modulators are not applied in the clinical treatment of AML. Here, we investigated whether targeting KDM6B, the demethylase of tri-methylated histone H3 lysine 27 (H3K27me3), has a therapeutic potential for AML. METHODS: A KDM6B-specific inhibitor, GSK-J4, was applied to treat the primary cells from AML patients and AML cell lines in vitro and in vivo. RNA-sequencing was performed to reveal the underlying mechanisms of inhibiting KDM6B for the treatment of AML. RESULTS: Here we observed that the mRNA expression of KDM6B was up-regulated in AML and positively correlated with poor survival. Treatment with GSK-J4 increased the global level of H3K27me3 and reduced the proliferation and colony-forming ability of primary AML cells and AML cell lines. GSK-J4 treatment significantly induced cell apoptosis and cell-cycle arrest in Kasumi-1 cells, and displayed a synergistic effect with cytosine arabinoside. Notably, injection of GSK-J4 attenuated the disease progression in a human AML xenograft mouse model in vivo. Treatment with GSK-J4 predominantly resulted in down-regulation of DNA replication and cell-cycle-related pathways, as well as abrogated the expression of critical cancer-promoting HOX genes. ChIP-qPCR validated an increased enrichment of H3K27me3 in the transcription start sites of these HOX genes. CONCLUSIONS: In summary, our findings suggest that targeting KDM6B with GSK-J4 has a therapeutic potential for the treatment of AML.


Assuntos
Benzazepinas/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Pirimidinas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Benzazepinas/administração & dosagem , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citarabina/administração & dosagem , Citarabina/farmacologia , Sinergismo Farmacológico , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Feminino , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/biossíntese , Histona Desmetilases com o Domínio Jumonji/genética , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Terapia de Alvo Molecular , Pirimidinas/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Discov ; 4: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29423272

RESUMO

Somatic or de novo mutations of Additional sex combs-like 1 (ASXL1) frequently occur in patients with myeloid malignancies or Bohring-Opitz syndrome, respectively. We have reported that global loss of Asxl1 leads to the development of myeloid malignancies and impairs bone marrow stromal cell (BMSC) fates in mice. However, the impact of Asxl1 deletion in the BM niche on hematopoiesis remains unclear. Here, we showed that BMSCs derived from chronic myelomonocytic leukemia patients had reduced expression of ASXL1, which impaired the maintaining cord blood CD34+ cell colony-forming capacity with a myeloid differentiation bias. Furthermore, Asxl1 deletion in the mouse BMSCs altered hematopoietic stem and progenitor cell (HSC/HPC) pool and a preferential myeloid lineage increment. Immunoprecipitation and ChIP-seq analyses demonstrated a novel interaction of ASXL1 with the core subunits of RNA polymerase II (RNAPII) complex. Convergent analyses of RNA-seq and ChIP-seq data revealed that loss of Asxl1 deregulated RNAPII transcriptional function and altered the expression of genes critical for HSC/HPC maintenance, such as Vcam1. Altogether, our study provides a mechanistic insight into the function of ASXL1 in the niche to maintain normal hematopoiesis; and ASXL1 alteration in, at least, a subset of the niche cells induces myeloid differentiation bias, thus, contributes the progression of myeloid malignancies.

10.
Stem Cell Reports ; 10(1): 166-179, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29290626

RESUMO

TET2 is a methylcytosine dioxygenase that regulates cytosine hydroxymethylation. Although there are extensive data implicating a pivotal role of TET2 in hematopoietic stem/progenitor cells (HSPCs), the importance of TET2 in bone marrow mesenchymal stromal cells (BMSCs) remains unknown. In this study, we show that loss of TET2 in BMSCs increases cell proliferation and self-renewal and enhances osteoblast differentiation potential of BMSCs, which may in turn alter their behavior in supporting HSPC proliferation and differentiation. In addition, Tet2 loss alters BMSCs in promoting Tet2-deficiency-mediated myeloid malignancy progression. Tet2 loss in BMSCs also dysregulates hydroxylation of 5-methylcytosine (5mC) and the expression of genes that are key for BMSC proliferation and osteoblast differentiation, leading to alteration of biological characteristics in vivo. These results highlight the critical role of TET2 in the maintenance of BMSC functions and osteoblast differentiation and provide evidence that dysregulation of epigenetic modifiers in BMSCs contributes to the progression of myeloid malignancies.


Assuntos
Células da Medula Óssea/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hematológicas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Células da Medula Óssea/patologia , Proteínas de Ligação a DNA/genética , Dioxigenases , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Células-Tronco Hematopoéticas/patologia , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Knockout , Células Mieloides/patologia , Proteínas Proto-Oncogênicas/genética
11.
Blood ; 131(3): 328-341, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29113963

RESUMO

Additional Sex Combs-Like 1 (ASXL1) is mutated at a high frequency in all forms of myeloid malignancies associated with poor prognosis. We generated a Vav1 promoter-driven Flag-Asxl1Y588X transgenic mouse model, Asxl1Y588X Tg, to express a truncated FLAG-ASXL1aa1-587 protein in the hematopoietic system. The Asxl1Y588X Tg mice had an enlarged hematopoietic stem cell (HSC) pool, shortened survival, and predisposition to a spectrum of myeloid malignancies, thereby recapitulating the characteristics of myeloid malignancy patients with ASXL1 mutations. ATAC- and RNA-sequencing analyses revealed that the ASXL1aa1-587 truncating protein expression results in more open chromatin in cKit+ cells compared with wild-type cells, accompanied by dysregulated expression of genes critical for HSC self-renewal and differentiation. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation experiments showed that ASXL1aa1-587 acquired an interaction with BRD4. An epigenetic drug screening demonstrated a hypersensitivity of Asxl1Y588X Tg bone marrow cells to BET bromodomain inhibitors. This study demonstrates that ASXL1aa1-587 plays a gain-of-function role in promoting myeloid malignancies. Our model provides a powerful platform to test therapeutic approaches of targeting the ASXL1 truncation mutations in myeloid malignancies.


Assuntos
Mutação com Ganho de Função/genética , Leucemia Mieloide/genética , Proteínas Repressoras/genética , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/metabolismo , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide/patologia , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Fatores de Transcrição/metabolismo
12.
Oncotarget ; 7(47): 78095-78109, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27801668

RESUMO

Leukemia stem cells (LSCs) can resist available treatments that results in disease progression and/or relapse. To dissect the microRNA (miRNA) expression signature of relapse in acute myeloid leukemia (AML), miRNA array analysis was performed using enriched LSCs from paired bone marrow samples of an AML patient at different disease stages. We identified that miR-99a was significantly upregulated in the LSCs obtained at relapse compared to the LSCs collected at the time of initial diagnosis. We also found that miR-99a was upregulated in LSCs compared to non-LSCs in a larger cohort of AML patients, and higher expression levels of miR-99a were significantly correlated with worse overall survival and event-free survival in these AML patients. Ectopic expression of miR-99a led to increased colony forming ability and expansion in myeloid leukemia cells after exposure to chemotherapeutic drugs in vitro and in vivo, partially due to overcoming of chemotherapeutic agent-mediated cell cycle arrest. Gene profiling and bioinformatic analyses indicated that ectopic expression of miR-99a significantly upregulated genes that are critical for LSC maintenance, cell cycle, and downstream targets of E2F and MYC. This study suggests that miR-99a has a novel role and potential use as a biomarker in myeloid leukemia progression.


Assuntos
Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Animais , Proliferação de Células/genética , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Células K562 , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/biossíntese , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...