Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(4): 105, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386219

RESUMO

Acidithiobacillus caldus is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological processes. Yet, the biological functions of Hfq derived from such extreme acidophile have not been extensively investigated. In this study, the recombinant strain Δhfq/Achfq, constructed by CRISPR/Cas9-mediated chromosome integration, fully or partially restored the phenotypic defects caused by hfq deletion in Escherichia coli, including impaired growth performance, abnormal cell morphology, impaired swarming motility, decreased stress resistance, decreased intracellular ATP and free amino acid levels, and attenuated biofilm formation. Particularly noteworthy, the intracellular ATP level and biofilm production of the recombinant strain were increased by 12.2% and 7.0%, respectively, compared to the Δhfq mutant. Transcriptomic analysis revealed that even under heterologous expression, AcHfq exerted global regulatory effects on multiple cellular processes, including metabolism, environmental signal processing, and motility. Finally, we established a potential working model to illustrate the regulatory mechanism of AcHfq in bacterial resistance to environmental stress.


Assuntos
Aminoácidos , Biofilmes , Escherichia coli/genética , Perfilação da Expressão Gênica , Trifosfato de Adenosina
2.
Bioresour Technol ; 394: 130193, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081468

RESUMO

The iron metabolism partners Leptospirillum ferriphilum and Acidiphilium sp. were screened from industrial bioheap site. An integrated multi-stage strategy was proposed to improve chalcolite column bioleaching coupling with synergistical utilization of cellulosic waste such as acid hydrolysate of aquatic plants. L. ferriphilum was used to accelerate the initial iron metabolism, and Acidithiobacillus caldus maintained a lower pH in the middle stage, while Acidiphilium sp. greatly inhibited jarosite passivation in the later stage. Meanwhile, L. ferriphilum (38.3 %) and Acidiphilium sp. (37.0 %) dominated the middle stage, while the abundance of Acidiphilium sp. reached 63.5 % in the later stage. The ferrous, sulfate ion and biomass were improved and the transcriptional levels of some biofilm and morphology related genes were significantly up-regulated. The final Cu2+ concentration reached 325.5 mg·L-1, improved by 43.8 %. Moreover, Canonical Correlation Analysis (CCA) analysis between bioleaching performance, iron/sulfur metabolism and community verified the important role of iron metabolism partners.


Assuntos
Acidiphilium , Acidithiobacillus , Bactérias , Acidiphilium/metabolismo , Cobre/metabolismo , Oxirredução , Ferro/metabolismo , Acidithiobacillus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...