Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 357: 142103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653400

RESUMO

Salinity is an important environmental factor influencing the toxicity of chemicals. Bisphenol A (BPA) is an environmental endocrine disruptor with adverse effects on aquatic organisms, such as fish. However, the influence of salinity on the biotoxicity of BPA and the underlying mechanism are unclear. In this study, we exposed marine medaka (Oryzias melastigma) to BPA at different salinities (0 psµ, 15 psµ, and 30 psµ) for 70days to investigate the toxic effects. At 0 psµ salinity, BPA had an inhibitory effect on the swimming behavior of female medaka. At 15 psµ salinity, exposure to BPA resulted in necrotic cells in the ovaries but not on the spermatozoa. In addition, BPA exposure changed the transcript levels of genes related to the nervous system (gap43, elavl3, gfap, mbpa, and α-tubulin) and the hypothalamic-pituitary-gonadal (HPG) axis (fshr, lhr, star, arα, cyp11a, cyp17a1, cyp19a, and erα); the expression changes differed among salinity levels. These results suggest that salinity influences the adverse effects of BPA on the nervous system and reproductive system of medaka. These results emphasize the importance of considering the impact of environmental factors when carrying out ecological risk assessment of pollutants.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Oryzias , Fenóis , Reprodução , Salinidade , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Poluentes Químicos da Água/toxicidade , Feminino , Reprodução/efeitos dos fármacos , Masculino , Disruptores Endócrinos/toxicidade , Comportamento Animal/efeitos dos fármacos , Ovário/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos
2.
Aquat Toxicol ; 271: 106927, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643640

RESUMO

As awareness of BPA's health risks has increased, many countries and regions have implemented strict controls on its use. Consequently, bisphenol analogues like BPF and BPAF are being increasingly used as substitutes. However, these compounds are also becoming increasingly prevalent in the environment due to production, use and disposal processes. The oceans act as a repository for various pollutants, and recent studies have revealed the extensive presence of bisphenols (BPs, including BPA, BPF, BPAF, etc.) in the marine environment, posing numerous health hazards to marine wildlife. Nevertheless, the reproductive toxicity of these chemicals on marine fish is not comprehensively comprehended yet. Thus, the histological features of the gonads and the gene expression profiles of HPG (Hypothalamic-Pituitary-Gonadal) axis-related genes in marine medaka (Oryzias melastigma) were studied after exposure to single and combined BPs for 70 days. The effects of each exposure group on spawning, embryo fertilization, and hatching in marine medaka were also assessed. Furthermore, the impacts of each exposure group on the genes related to methylation in the F2 and F3 generations were consistently investigated. BPs exposure was found to cause follicular atresia, irregular oocytes, and empty follicles in the ovary; but no significant lesions in the testis were observed. The expression of several HPG axis genes, including cyp19b, 17ßhsd, 3ßhsd, and fshr, resulted in significant changes compared to the control group. The quantity of eggs laid and fertilization rate decreased in all groups treated with BPs, with the BPAF-treated group showing a notable reduction in the number of eggs laid. Additionally, the hatching rate showed a more significant decline in the BPF-treated group. The analysis of methylated genes in the offspring of bisphenol-treated groups revealed significant changes in the expression of genes including amh, dnmt1, dnmt3ab, mbd2, and mecp2, indicating a potential transgenerational impact of bisphenols on phenotype through epigenetic modifications. Overall, the potential detrimental impact of bisphenol on the reproduction of marine medaka emphasizes the need for caution in considering the use of BPAF and BPF as substitutes.


Assuntos
Compostos Benzidrílicos , Oryzias , Fenóis , Reprodução , Poluentes Químicos da Água , Animais , Oryzias/genética , Oryzias/fisiologia , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Poluentes Químicos da Água/toxicidade , Masculino , Reprodução/efeitos dos fármacos , Feminino , Gônadas/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38508354

RESUMO

Bisphenol AF (BPAF) is a novel environmental endocrine disruptor, and is widely detected in the aquatic environment, which is a potential threat to the health of fish. In this study, male Oryzias curvinotus were exposed to environmental concentrations (0.93 and 9.33 µg/L) of BPAF for 21 days. The effects of BPAF on survival, growth, reproduction, liver and testis histology, and gene transcriptional profiles of O. curvinotus were investigated. The results showed that the survival rate of male O. curvinotus slight decrease with increasing BPAF concentration, and there was no significant effect on body length, body weight, and K-factor. BPAF (9.33 µg/L) caused significant changes in testicular structure and reduced spermatid count in O. curvinotus. Changes in transcript levels of some antioxidant-related genes in gills and liver following BPAF exposure, imply an effect of BPAF on the immune system. After BPAF exposure, chgs and vtgs were up-regulated, validating the estrogenic effect of BPAF. In the hypothalamic - pituitary - gonadal axis (HPG) results, erα, erγ and cyp19a1b were all up-regulated in the brain, and the 0.93 µg/L BPAF group was more up-regulated than the 9.33 µg/L BPAF group. In testis, BPAF significantly up-regulated the mRNA expression level of cyp17a1 and cyp11b, while significantly down-regulated mRNA expression level of cyp11a, and cyp19a1 was significantly down-regulated only in the 0.93 µg/L BPAF group. In conclusion, environmental levels of BPAF have adverse effects on the survival and reproduction of O. curvinotus, and the potential toxic effects of environmental levels of BPAF cannot be ignored.


Assuntos
Fluorocarbonos , Oryzias , Animais , Masculino , Reprodução , Testículo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...