Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296152

RESUMO

Three-dimensional (3D) interconnection technology based on glass through vias (TGVs) has been used to integrate passive devices, and optoelectronic devices due to its superior electrical qualities, outstanding mechanical stability, and lower cost. Nevertheless, the performance and reliability of the device will be impacted by the thermal stress brought on by the mismatch of the coefficient of thermal expansion among multi-material structures and the complicated structure of TGV. This paper focuses on thermal stress evolution in different geometric and material parameters and the development of a controlled method for filling polymers in TGV interconnected structures. In addition, a numerical study based on the finite element (FE) model has been conducted to analyze the stress distribution of the different thicknesses of TGV-Cu. Additionally, a TGV interconnected structure model with a polymer buffer layer is given to solve the crack problem appearing at the edge of RDL. Meanwhile, after practical verification, in comparison to the experimental results, the FE model was shown to be highly effective and accurate for predicting the evolution of stress, and several recommendations were made to alleviate stress-related reliability concerns. An improved manufacturing process flow for the TGV interconnected structure was proposed and verified as feasible to address the RDL crack issue based on the aforementioned research. It provides helpful information for the creation of highly reliable TGV connection structures.

2.
Sensors (Basel) ; 22(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35957317

RESUMO

In this paper, we present wafer-level packaging technology for surface acoustic wave (SAW) filters with higher long-term reliability and better electrical performance. This article focuses on the package structure, fabrication processes, and reliability for the SAW filter wafer-level package (WLP). The key processes, including cavity wall (CW) dam formation through non-photosensitive film vias development using a laser drilling process, a redistribution layer (RDL), and ball-grid array formation are developed. In addition, a numerical study based on the finite element model has been conducted to analyze the stress distribution of Cu RDL traces. In addition, the CW dam and the roof layer are covered with polymer, which solves the delamination problem between the CW dam and the substrate. Meanwhile, after practical verification, the SAW filter WLP was resistant to encapsulating pressure using a high elastic modulus capping material, which solved the collapse problem. Additionally, a comparison of the RF filter package's electrical performance following the preconditional level 3 and unbiased highly accelerated stress test revealed no differences in insertion attenuation across the passband (<0.2 dB, standard value: 1 dB). The final packages passed the reliability tests in the field of consumer electronics.

3.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336284

RESUMO

The development of 5G mobile communication created the need for high-frequency communication systems, which require vast quantities of radio frequency (RF) filters with a high-quality factor (Q) and low inband losses. In this study, the packaging of an RF filter with a through-glass via (TGV) interposer was designed and fabricated using a three-dimensional wafer-level package (3D WLP). TGV fabrication is a high-yielding process, which can produce high precision vias without masking and lithography and reduce the manufacturing cost compared with the through silicon via (TSV) solution. The glass interposer capping wafer contains Cu-filled TGV, a metal redistribution layer (RDL), and the bonding layer. The RF filter substrate with Au bump is bonded to the capping wafer based on Au-Sn transient liquid phase (TLP) bonding at 280 °C with a 40 kN (approximately 6.5 MPa) bonding force. Experimental results show that shear strengths of approx. 54.5 MPa can be obtained, higher than the standard requirement (~6 MPa). In addition, a comparison of the electrical performance of the RF filter package after the pre-conditional level three (Pre-Con L3) and unbiased highly accelerated stress (uHAST) tests showed no difference in insertion attenuation across the passband (<0.2 dB, standard value: <1 dB). The final packages passed the reliability tests in the field of consumer electronics. The proposed RF filter WLP achieves high performance, low cost, and superior reliability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...