Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.547
Filtrar
1.
Front Neurol ; 15: 1382793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962479

RESUMO

Background: Endoscopic transnasal optic canal decompression is widely used in the treatment of traumatic optic neuropathy (TON) following head and craniofacial trauma. Intraoperative hemorrhage is a catastrophic surgical complication during optic canal decompression. Case description: We present two cases of patients with TON who suffered unexpected intra-operative massive bleeding during endoscopic transnasal optic canal decompression. After intraoperative hemostasis was achieved, emergent cerebral angiograms demonstrated the formation of internal carotid pseudoaneurysms, which were immediately embolized with coils combined with or without Onyx with balloon assistance. One of these cases was also complicated by a postoperative cerebrospinal fluid leak, which failed to be treated with lumbar drainage but was successfully repaired with endoscopic transnasal surgery. Conclusion: The intra-operative rupture of ICA pseudoaneurysm is a rare but catastrophic complication in TON patients. Intraoperative massive bleeding indicates rupture of ICA pseudoaneurysm. Postoperative emergency angiography and endovascular therapy should be arranged to evaluate and repair the cerebral vascular injury. Endoscopic trans-nasal surgery repairing CSF leaks resistant to lumbar drainage could be efficient and safe following pseudoaneurysm embolization.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124745, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955071

RESUMO

H2S plays a crucial role in numerous physiological and pathological processes. In this project, a new fluorescent probe, SG-H2S, for the detection of H2S, was developed by introducing the recognition group 2,4-dinitrophenyl ether. The combination of rhodamine derivatives can produce both colorimetric reactions and fluorescence reactions. Compared with the current H2S probes, the main advantages of SG-H2S are its wide pH range (5-9), fast response (30 min), and high selectivity in competitive species (including biological mercaptan). The probe SG-H2S has low cytotoxicity and has been successfully applied to imaging in MCF-7 cells, HeLa cells, and BALB/c nude mice. We hope that SG-H2S will provide a vital method for the field of biology.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38971662

RESUMO

BACKGROUND: Optical coherence tomography (OCT) is used widely to guide stent placement, identify higher-risk plaques, and assess mechanisms of drug efficacy. However, a range of common artifacts can prevent accurate plaque classification and measurements, and limit usable frames in research studies. We determined whether pre-processing OCT images corrects artifacts and improves plaque classification. METHODS: We examined both ex-vivo and clinical trial OCT pullbacks for artifacts that prevented accurate tissue identification and/or plaque measurements. We developed Fourier transform-based software that reconstructed images free of common OCT artifacts, and compared corrected and uncorrected images. RESULTS: 48 % of OCT frames contained image artifacts, with 62 % of artifacts over or within lesions, preventing accurate measurement in 12 % frames. Pre-processing corrected >70 % of all artifacts, including thrombus, macrophage shadows, inadequate flushing, and gas bubbles. True tissue reconstruction was achieved in 63 % frames that would otherwise prevent accurate clinical measurements. Artifact correction was non-destructive and retained anatomical lumen and plaque parameters. Correction improved accuracy of plaque classification compared against histology and retained accurate assessment of higher-risk features. Correction also changed plaque classification and prevented artifact-related measurement errors in a clinical study, and reduced unmeasurable frames to <5 % ex-vivo and ~1 % in-vivo. CONCLUSIONS: Fourier transform-based pre-processing corrects a wide range of common OCT artifacts, improving identification of higher-risk features and plaque classification, and allowing more of the whole dataset to be used for clinical decision-making and in research. Pre-processing can augment OCT image analysis systems both for stent optimization and in natural history or drug studies.

4.
Se Pu ; 42(7): 711-720, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966979

RESUMO

Protein citrullination is an irreversible post-translational modification process regulated by peptidylarginine deiminases (PADs) in the presence of Ca2+. This process is closely related to the occurrence and development of autoimmune diseases, cancers, neurological disorders, cardiovascular and cerebrovascular diseases, and other major diseases. The analysis of protein citrullination by biomass spectrometry confronts great challenges owing to its low abundance, lack of affinity tags, small mass-to-charge ratio change, and susceptibility to isotopic and deamidation interferences. The methods commonly used to study the protein citrullination mainly involve the chemical derivatization of the urea group of the guanine side chain of the peptide to increase the mass-to-charge ratio difference of the citrullinated peptide. Affinity-enriched labels are then introduced to effectively improve the sensitivity and accuracy of protein citrullination by mass spectrometry. 2,3-Butanedione or phenylglyoxal compounds are often used as derivatization reagents to increase the mass-to-charge ratio difference of the citrullinated peptide, and the resulting derivatives have been observed to contain α-dicarbonyl structures. To date, however, no relevant studies on the reactivity of dicarbonyl compounds with citrullinated peptides have been reported. In this study, we determined whether six α-dicarbonyl and two ß-dicarbonyl compounds undergo derivatization reactions with standard citrullinated peptides using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Among the α-dicarbonyl compounds, 2,3-butanedione and glyoxal reacted efficiently with several standard citrullinated peptides, but yielded a series of by-products. Phenylglyoxal, methylglyoxal, 1,2-cyclohexanedione, and 1,10-phenanthroline-5,6-dione also derivated efficiently with standard citrullinated peptides, generating a single derivative. Thus, a new derivatization method that could yield a single derivative was identified. Among the ß-dicarbonyl compounds, 1,3-cyclohexanedione and 2,4-pentanedione successfully reacted with the standard citrullinated peptides, and generated a single derivative. However, their reaction efficiency was very low, indicating that the ß-dicarbonyl compounds are unsuitable for the chemical derivatization of citrullinated peptides. The above results indicate that the α-dicarbonyl structure is necessary for realizing the efficient and specific chemical derivatization of citrullinated peptides. Moreover, the side chains of the α-dicarbonyl structure determine the structure of the derivatives, derivatization efficiency, and generation (or otherwise) of by-products. Therefore, the specific enrichment and precise identification of citrullinated peptides can be achieved by synthesizing α-dicarbonyl structured compounds containing affinity tags. The proposed method enables the identification of citrullinated proteins and their modified sites by MS, thereby providing a better understanding of the distribution of citrullinated proteins in different tissues. The findings will be beneficial for studies on the mechanism of action of citrullinated proteins in a variety of diseases.


Assuntos
Citrulinação , Peptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Peptídeos/química
5.
J Nanobiotechnology ; 22(1): 387, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951841

RESUMO

Metal-organic frameworks (MOFs) are metal-organic skeleton compounds composed of self-assembled metal ions or clusters and organic ligands. MOF materials often have porous structures, high specific surface areas, uniform and adjustable pores, high surface activity and easy modification and have a wide range of prospects for application. MOFs have been widely used. In recent years, with the continuous expansion of MOF materials, they have also achieved remarkable results in the field of antimicrobial agents. In this review, the structural composition and synthetic modification of MOF materials are introduced in detail, and the antimicrobial mechanisms and applications of these materials in the healing of infected wounds are described. Moreover, the opportunities and challenges encountered in the development of MOF materials are presented, and we expect that additional MOF materials with high biosafety and efficient antimicrobial capacity will be developed in the future.


Assuntos
Estruturas Metalorgânicas , Cicatrização , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Cicatrização/efeitos dos fármacos , Humanos , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Porosidade , Infecção dos Ferimentos/tratamento farmacológico
6.
J Orthop Surg Res ; 19(1): 388, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956678

RESUMO

BACKGROUND: In patients undergoing total joint arthroplasty (TJA), the administration of dexamethasone may contribute to perioperative blood glucose (BG) disturbances, potentially resulting in complications, even in patients without diabetes. This study aimed to demonstrate the impact of different administration regimens of dexamethasone in postoperative BG levels. METHODS: In this randomized, controlled, double-blind trial, 136 patients without diabetes scheduled for TJA were randomly assigned to three groups: two perioperative saline injections (Group A, placebo); a single preoperative injection of 20 mg dexamethasone and a postoperative saline injection (Group B), and two perioperative injections of 10 mg dexamethasone (Group C). Primary outcomes were the postoperative fasting blood glucose (FBG) levels. Secondary outcome parameters were the postoperative postprandial blood glucose (PBG) levels. Postoperative complications within 90 days were also recorded. Risk factors for FBG ≥ 140 mg/dl and PBG ≥ 180 mg/dl were investigated. RESULTS: Compared to Group A, there were transient increases in FBG and PBG on postoperative days (PODs) 0 and 1 in Groups B and C. Statistical differences in FBG and PBG among the three groups were nearly absent from POD 1 onward. Both dexamethasone regimens did not increase the risk for postoperative FBG ≥ 140 mg/dl or PBG ≥ 180 mg/dl. Elevated preoperative HbA1c levels may increase the risk of postoperative FBG ≥ 140 mg/dl or PBG ≥ 180 mg/dl, respectively. CONCLUSION: Perioperative intravenous high-dose dexamethasone to patients without diabetes has transient effects on increasing BG levels after TJA. However, no differences were found between the split-dose and single high-dose regimens. The elevated preoperative HbA1c, but not the dexamethasone regimens were the risk factor for FBG ≥ 140 mg/dl and PBG ≥ 180 mg/dl. TRIAL REGISTRATION: Chinese Clinical Trail Registry, ChiCTR2300069473. Registered 17 March 2023, https://www.chictr.org.cn/showproj.html?proj=186760 .


Assuntos
Glicemia , Dexametasona , Humanos , Dexametasona/administração & dosagem , Método Duplo-Cego , Masculino , Feminino , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Pessoa de Meia-Idade , Idoso , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/sangue , Injeções Intravenosas , Período Pós-Operatório , Artroplastia de Quadril/efeitos adversos , Glucocorticoides/administração & dosagem , Artroplastia de Substituição/efeitos adversos , Administração Intravenosa
7.
Adv Sci (Weinh) ; : e2402327, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981014

RESUMO

Dysregulation of the transforming growth factor-ß (TGF-ß) signaling pathway regulates cancer stem cells (CSCs) and drug sensitivity, whereas it remains largely unknown how feedback regulatory mechanisms are hijacked to fuel drug-resistant CSCs. Through a genome-wide CRISPR activation screen utilizing stem-like drug-resistant properties as a readout, the TGF-ß receptor-associated binding protein 1 (TGFBRAP1) is identified as a TGF-ß-inducible positive feedback regulator that governs sensitivity to tyrosine kinase inhibitors (TKIs) and promotes liver cancer stemness. By interacting with and stabilizing the TGF-ß receptor type 1 (TGFBR1), TGFBRAP1 plays an important role in potentiating TGF-ß signaling. Mechanistically, TGFBRAP1 competes with E3 ubiquitin ligases Smurf1/2 for binding to TGFΒR1, leading to impaired receptor poly-ubiquitination and proteasomal degradation. Moreover, hyperactive TGF-ß signaling in turn up-regulates TGFBRAP1 expression in drug-resistant CSC-like cells, thereby constituting a previously uncharacterized feedback mechanism to amplify TGF-ß signaling. As such, TGFBRAP1 expression is correlated with TGFΒR1 levels and TGF-ß signaling activity in hepatocellular carcinoma (HCC) tissues, as well as overall survival and disease recurrence in multiple HCC cohorts. Therapeutically, blocking TGFBRAP1-mediated stabilization of TGFBR1 by selective inhibitors alleviates Regorafenib resistance via reducing CSCs. Collectively, targeting feedback machinery of TGF-ß signaling pathway may be an actionable approach to mitigate drug resistance and liver cancer stemness.

8.
Mol Cancer ; 23(1): 141, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982480

RESUMO

BACKGROUND: The aberrant expression of phosphofructokinase-platelet (PFKP) plays a crucial role in the development of various human cancers by modifying diverse biological functions. However, the precise molecular mechanisms underlying the role of PFKP in head and neck squamous cell carcinoma (HNSCC) are not fully elucidated. METHODS: We assessed the expression levels of PFKP and c-Myc in tumor and adjacent normal tissues from 120 HNSCC patients. A series of in vitro and in vivo experiments were performed to explore the impact of the feedback loop between PFKP and c-Myc on HNSCC progression. Additionally, we explored the therapeutic effects of targeting PFKP and c-Myc in HNSCC using Patient-Derived Organoids (PDO), Cell Line-Derived Xenografts, and Patients-Derived Xenografts. RESULTS: Our findings indicated that PFKP is frequently upregulated in HNSCC tissues and cell lines, correlating with poor prognosis. Our in vitro and in vivo experiments demonstrate that elevated PFKP facilitates cell proliferation, angiogenesis, and metastasis in HNSCC. Mechanistically, PFKP increases the ERK-mediated stability of c-Myc, thereby driving progression of HNSCC. Moreover, c-Myc stimulates PFKP expression at the transcriptional level, thus forming a positive feedback loop between PFKP and c-Myc. Additionally, our multiple models demonstrate that co-targeting PFKP and c-Myc triggers synergistic anti-tumor effects in HNSCC. CONCLUSION: Our study demonstrates the critical role of the PFKP/c-Myc positive feedback loop in driving HNSCC progression and suggests that simultaneously targeting PFKP and c-Myc may be a novel and effective therapeutic strategy for HNSCC.


Assuntos
Progressão da Doença , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Proteínas Proto-Oncogênicas c-myc , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Camundongos , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Fosfofrutoquinase-1 Tipo C/metabolismo , Fosfofrutoquinase-1 Tipo C/genética , Proliferação de Células , Prognóstico , Feminino , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto , Biomarcadores Tumorais/metabolismo
9.
J Inflamm Res ; 17: 4093-4104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948198

RESUMO

Purpose: Acute graft-versus-host disease (aGVHD) poses a significant impediment to achieving a more favourable therapeutic outcome in allogeneic hematopoietic stem cell transplantation (allo-HSCT). The tumour suppressor p53 plays a pivotal role in preventing aGVHD development. However, whether P53 pathway which contains p53 family members and other related genes participates in aGVHD development remains an unsolved question. Patients and Methods: Transcriptomic data was obtained from Gene Expression Omnibus (GEO) database. Gene set enrichment analysis was applied to determine the enrichment degree of signaling pathways. CIBERSORT and ssGSVA were used to evaluate immune cell compositions. Univariate and multivariate logistic regression analysis were performed to examine the independent diagnostic variables. qRT-PCR was utilized to validate the genes expression levels in our cohort. Results: A total number of 102 patients (42 aGVHD patients vs 60 non-aGVHD patients) were obtained after integrating two datasets in GEO database (GSE73809 and GSE4624). P53 pathway was remarkably suppressed in T cells from aGVHD patients and negatively associated with activated T cells as well as T cells activation related signaling pathways, including T-cell receptor (TCR), mTORC1, MYC and E2F target pathways. A risk model for aGVHD built by four genes (DDIT3, FBXW7, TPRKB and TOB1) in P53 pathway, exhibiting high differentiate and predictive value. DDIT3 and FBXW7 mRNA expression levels significantly decreased in peripheral blood mononuclear cells (PBMCs) from aGVHD patients compared with non-aGVHD group in our patient cohort, consisting with bioinformatics analysis. Conclusion: P53 pathway plays a potential role in impeding T cell activation through suppressing its related signaling pathways, thereby preventing aGVHD development. P53 pathway may emerge as a promising therapeutic target in aGVHD treatment.

10.
J Am Chem Soc ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950195

RESUMO

Developing efficient, low-cost, MOF catalysts for CO2 conversion at low CO2 concentrations under mild conditions is particularly interesting but remains highly challenging. Herein, we prepared an isostructural series of two-dimensional (2D) multivariate metal-organic frameworks (MTV-MOFs) containing copper- and/or silver-based cyclic trinuclear complexes (Cu-CTC and Ag-CTC). These MTV-MOFs can be used as efficient and reusable heterogeneous catalysts for the cyclization of propargylamine with CO2. The catalytic performance of these MTV-MOFs can be engineered by fine-tuning the Ag/Cu ratio in the framework. Interestingly, the induction of 10% Ag remarkably improved the catalytic efficiency with a turnover frequency (TOF) of 243 h-1, which is 20-fold higher than that of 100% Cu-based MOF (i.e., TOF = 10.8 h-1). More impressively, such a bimetallic MOF still exhibited high catalytic activity even for simulated flue gas with 10% CO2 concentration. Furthermore, the reaction mechanism has been examined through the employment of NMR monitoring experiments and DFT calculations.

11.
Physiol Behav ; 284: 114626, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964566

RESUMO

The existence of Virtual Reality Motion Sickness (VRMS) is a key factor restricting the further development of the VR industry, and the premise to solve this problem is to be able to accurately and effectively detect its occurrence. In view of the current lack of high-accuracy and effective detection methods, this paper proposes a VRMS detection method based on entropy asymmetry and cross-frequency coupling value asymmetry of EEG. First of all, the EEG of the four selected pairs of electrodes on the bilateral brain are subjected to Multivariate Variational Mode Decomposition (MVMD) respectively, and three types of entropy values on the low-frequency and high-frequency components are calculated, namely approximate entropy, fuzzy entropy and permutation entropy, as well as three types of phase-amplitude coupling features between the low-frequency and high-frequency components, namely the mean value, standard deviation and correlation coefficient; Secondly, the difference of the entropies and the cross-frequency coupling features between the left electrodes and the right electrodes are calculated; Finally, the final feature set are selected via t-test and fed into the SVM for classification, thus realizing the automatic detection of VRMS. The results show that the three classification indexes under this method, i.e., accuracy, sensitivity and specificity, reach 99.5 %, 99.3 % and 99.7 %, respectively, and the value of the area under the ROC curve reached 1, which proves that this method can be an effective indicator for detecting the occurrence of VRMS.

13.
Biomed Pharmacother ; 177: 117025, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941893

RESUMO

As a broad-spectrum anticancer drug, cisplatin is widely used in the treatment of tumors in various systems. Unfortunately, several serious side effects of cisplatin limit its clinical application, the most common of which are nephrotoxicity and ototoxicity. Studies have shown that cochlear hair cell degeneration is the main cause of cisplatin-induced hearing loss. However, the mechanism of cisplatin-induced hair cell death remains unclear. The present study aimed to explore the potential role of activating transcription factor 6 (ATF6), an endoplasmic reticulum (ER)-localized protein, on cisplatin-induced ototoxicity in vivo and in vitro. In this study, we observed that cisplatin exposure induced apoptosis of mouse auditory OC-1 cells, accompanied by a significant increase in the expression of ATF6 and C/EBP homologous protein (CHOP). In cell or cochlear culture models, treatment with an ATF6 agonist, an ER homeostasis regulator, significantly ameliorated cisplatin-induced cytotoxicity. Further, our in vivo experiments showed that subcutaneous injection of an ATF6 agonist almost completely prevented outer hair cell loss and significantly alleviated cisplatin-induced auditory brainstem response (ABR) threshold elevation in mice. Collectively, our results revealed the underlying mechanism by which activation of ATF6 significantly improved cisplatin-induced hair cell apoptosis, at least in part by inhibiting apoptosis signal-regulating kinase 1 expression, and demonstrated that pharmacological activation of ATF6-mediated unfolded protein response is a potential treatment for cisplatin-induced ototoxicity.

14.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915622

RESUMO

Our previous studies have indicated that insulin resistance, hyperglycemia, and hypertension in aged wild-type (WT) mice can be reversed in mice lacking chromogranin-A (CgA-KO mice). These health conditions are associated with a higher risk of Alzheimer's disease (AD). CgA, a neuroendocrine secretory protein has been detected in protein aggregates in the brains of AD patients. Here, we determined the role of CgA in tauopathies, including AD (secondary tauopathy) and corticobasal degeneration (CBD, primary tauopathy). We found elevated levels of CgA in both AD and CBD brains, which were positively correlated with increased phosphorylated tau in the frontal cortex. Furthermore, CgA ablation in a human P301S tau (hTau) transgenic mice (CgA-KO/hTau) exhibited reduced tau aggregation, resistance to tau spreading, and an extended lifespan, coupled with improved cognitive function. Transcriptomic analysis of mice cortices highlighted altered levels of alpha-adrenergic receptors (Adra) in hTau mice compared to WT mice, akin to AD patients. Since CgA regulates the release of the Adra ligands epinephrine (EPI) and norepinephrine (NE), we determined their levels and found elevated EPI levels in the cortices of hTau mice, AD and CBD patients. CgA-KO/hTau mice exhibited reversal of EPI levels in the cortex and the expression of several affected genes, including Adra1 and 2, nearly returning them to WT levels. Treatment of hippocampal slice cultures with EPI or an Adra1 agonist intensified, while an Adra1 antagonist inhibited, tau hyperphosphorylation and aggregation. These findings reveal a critical role of CgA in regulation of tau pathogenesis via the EPI-Adra signaling axis.

15.
J Nanobiotechnology ; 22(1): 342, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890721

RESUMO

Acute lung injury (ALI) is a common complication in patients with severe burns and has a complex pathogenesis and high morbidity and mortality rates. A variety of drugs have been identified in the clinic for the treatment of ALI, but they have toxic side effects caused by easy degradation in the body and distribution throughout the body. In recent years, as the understanding of the mechanism underlying ALI has improved, scholars have developed a variety of new nanomaterials that can be safely and effectively targeted for the treatment of ALI. Most of these methods involve nanomaterials such as lipids, organic polymers, peptides, extracellular vesicles or cell membranes, inorganic nanoparticles and other nanomaterials, which are targeted to reach lung tissues to perform their functions through active targeting or passive targeting, a process that involves a variety of cells or organelles. In this review, first, the mechanisms and pathophysiological features of ALI occurrence after burn injury are reviewed, potential therapeutic targets for ALI are summarized, existing nanomaterials for the targeted treatment of ALI are classified, and possible problems and challenges of nanomaterials in the targeted treatment of ALI are discussed to provide a reference for the development of nanomaterials for the targeted treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Queimaduras , Nanoestruturas , Lesão Pulmonar Aguda/tratamento farmacológico , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Queimaduras/tratamento farmacológico , Animais , Pulmão , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química
16.
ACS Appl Mater Interfaces ; 16(25): 32104-32117, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865210

RESUMO

The repair of infected wounds is a complex physiopathologic process. Current studies on infected wound treatment have predominantly focused on infection treatment, while the factors related to delayed healing caused by vascular damage and immune imbalance are commonly overlooked. In this study, an extracellular matrix (ECM)-like dynamic and multifunctional hyaluronic acid (HA) hydrogel with antimicrobial, immunomodulatory, and angiogenic capabilities was designed as wound dressing for the treatment of infected skin wounds. The dynamic network in the hydrogel dressing was based on reversible metal-ligand coordination formed between sulfhydryl groups and bioactive metal ions. In our design, antibacterial silver and immunomodulatory zinc ions were employed to coordinate with sulfhydrylated HA and a vasculogenic peptide. In addition to the desired bioactivities for infected wounds, the hydrogel could also exhibit self-healing and injectable abilities. Animal experiments with infected skin wound models indicated that the hydrogel dressings enabled minimally invasive injection and seamless skin wound covering and then facilitated wound healing by efficient bacterial killing, continuous inflammation inhibition, and improved blood vessel formation. In conclusion, the metal ion-coordinated hydrogels with wound-infection-desired bioactivities and ECM-like dynamic structures represent a class of tissue bionic wound dressings for the treatment of infected and chronic inflammation wounds.


Assuntos
Antibacterianos , Hidrogéis , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Camundongos , Prata/química , Prata/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Zinco/química , Zinco/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/patologia , Infecção dos Ferimentos/microbiologia , Bandagens , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Íons/química
17.
Mol Neurodegener ; 19(1): 51, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915105

RESUMO

BACKGROUND: Tau is aberrantly acetylated in various neurodegenerative conditions, including Alzheimer's disease, frontotemporal lobar degeneration (FTLD), and traumatic brain injury (TBI). Previously, we reported that reducing acetylated tau by pharmacologically inhibiting p300-mediated tau acetylation at lysine 174 reduces tau pathology and improves cognitive function in animal models. METHODS: We investigated the therapeutic efficacy of two different antibodies that specifically target acetylated lysine 174 on tau (ac-tauK174). We treated PS19 mice, which harbor the P301S tauopathy mutation that causes FTLD, with anti-ac-tauK174 and measured effects on tau pathology, neurodegeneration, and neurobehavioral outcomes. Furthermore, PS19 mice received treatment post-TBI to evaluate the ability of the immunotherapy to prevent TBI-induced exacerbation of tauopathy phenotypes. Ac-tauK174 measurements in human plasma following TBI were also collected to establish a link between trauma and acetylated tau levels, and single nuclei RNA-sequencing of post-TBI brain tissues from treated mice provided insights into the molecular mechanisms underlying the observed treatment effects. RESULTS: Anti-ac-tauK174 treatment mitigates neurobehavioral impairment and reduces tau pathology in PS19 mice. Ac-tauK174 increases significantly in human plasma 24 h after TBI, and anti-ac-tauK174 treatment of PS19 mice blocked TBI-induced neurodegeneration and preserved memory functions. Anti-ac-tauK174 treatment rescues alterations of microglial and oligodendrocyte transcriptomic states following TBI in PS19 mice. CONCLUSIONS: The ability of anti-ac-tauK174 treatment to rescue neurobehavioral impairment, reduce tau pathology, and rescue glial responses demonstrates that targeting tau acetylation at K174 is a promising neuroprotective therapeutic approach to human tauopathies resulting from TBI or genetic disease.


Assuntos
Tauopatias , Proteínas tau , Animais , Tauopatias/metabolismo , Proteínas tau/metabolismo , Camundongos , Acetilação , Humanos , Imunoterapia/métodos , Modelos Animais de Doenças , Camundongos Transgênicos , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Fármacos Neuroprotetores/farmacologia
18.
Biosensors (Basel) ; 14(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38920567

RESUMO

The spread of the FluA virus poses significant public health concerns worldwide. Fluorescent lateral flow immunoassay (LFIA) test strips have emerged as vital tools for the early detection and monitoring of influenza infections. However, existing quantitative virus-detection methods, particularly those utilizing smartphone-based sensing platforms, encounter accessibility challenges in resource-limited areas and among the elderly population. Despite their advantages in speed and portability, these platforms often lack user-friendliness for these demographics, impeding their widespread utilization. To address these challenges, this study proposes leveraging the optical pick-up unit (OPU) sourced from commercial optical drives as a readily available fluorescence excitation module for the quantitative detection of antibodies labeled with quantum-dot fluorescent microspheres. Additionally, we utilize miniaturized and high-performance optical components and 3D-printed parts, along with a customized control system, to develop an affordable point-of-care testing (POCT) device. Within the system, a stepping motor scans the test strip from the T-line to the C-line, enabling the calculation of the fluorescence-intensity ratio between the two lines. This simple yet effective design facilitates rapid and straightforward field or at-home testing for FluA. The proposed prototype platform demonstrates promising performance, achieving a limit of detection (LOD) of 2.91 ng/mL, a total detection time of no more than 15 min, and dimensions of 151 mm × 11.2 mm × 10.8 mm3. We believe that the proposed approach holds great potential for improving access to an accurate influenza diagnosis.


Assuntos
Influenza Humana , Imunoensaio , Humanos , Influenza Humana/diagnóstico , Influenza Humana/virologia , Vírus da Influenza A/isolamento & purificação , Técnicas Biossensoriais , Fluorescência , Testes Imediatos , Pontos Quânticos , Sistemas Automatizados de Assistência Junto ao Leito
19.
Int J Biol Macromol ; 274(Pt 2): 133294, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925188

RESUMO

Congenital heart disease (CHD) is a type of major defect that occurs during embryonic development. Although significant advances have been made in the treatment of CHD, its etiology and molecular mechanism remain unclear. To identify the critical role of SUMOylation in cardiac development, we generated SENP3 knockout mice and showed that SENP3 knockout mice die on embryonic day 8.5 with an open neural tube and reversed left-right cardiac asymmetry. Moreover, SENP3 knockout promoted apoptosis and senescence of H9C2 cells. Further studies showed that Nodal, a critical gene that forms left-right asymmetry, is regulated by SENP3 and that SENP3 regulates cell apoptosis and senescence in a Nodal-dependent manner. Furthermore, Nodal was hyper-SUMOylated after SENP3 knockout, and SUMOylation of Nodal inhibited its ubiquitination and ubiquitin-proteasome degradation pathway. Nodal overexpression enhanced cell apoptosis and senescence; however, the mutation at the SUMOylation site of Nodal reversed its effect on the apoptosis and senescence of H9C2 cells. More importantly, the SENP3-Nodal axis regulates cell senescence by inducing cell autophagy. These results suggest that the SENP3-Nodal signaling axis regulates cardiac senescence-autophagy homeostasis, which in turn affects cardiac development and results in the occurrence of CHD.

20.
Nat Commun ; 15(1): 5401, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926352

RESUMO

Photocontrollable luminescent molecular switches capable of changing emitting color have been regarded as the ideal integration between intelligent and luminescent materials. A remaining challenge is to combine good luminescence properties with wide range of wavelength transformation, especially when confined in a single molecular system that forms well-defined nanostructures. Here, we report a π-expanded photochromic molecular photoswitch, which allows for the comprehensive achievements including wide emission wavelength variation (240 nm wide, 400-640 nm), high photoisomerization extent (95%), and pure emission color (<100 nm of full width at half maximum). We take the advantageous mechanism of modulating self-assembly and intramolecular charge transfer in the synthesis and construction, and further realize the full color emission by simple photocontrol. Based on this, both photoactivated anti-counterfeiting function and self-erasing photowriting films are achieved of fluorescence. This work will provide insight into the design of intelligent optical materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...