Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.769
Filtrar
1.
AME Case Rep ; 8: 66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091550

RESUMO

Background: Catheter malfunction is a common problem following the placement of a peritoneal dialysis (PD) catheter, and it is characterized by inadequate dialysate drainage, which can also limit infusion. Common causes include constipation, catheter migration, catheter kinking, omental wrapping, and fibrin obstruction. However, catheter obstruction by other intra-abdominal organs has been observed infrequently. Case Description: We present two cases of female PD patients experiencing catheter dysfunction after catheter implantation. The first case involves a 28-year-old female who suffered from problematic drainage and infusion of dialysate 1 month after catheter insertion, evidenced by catheter displacement from the pelvis on abdominal X-ray. The second case concerns a 49-year-old female PD patient who also encountered a bidirectional catheter malfunction 40 days post-implantation. Conservative methods failed to restore the catheter function in both patients. Laparoscopic examination revealed fallopian tube, not the omentum, was tightly wrapped around the PD catheter in both cases. Finally, laparoscopic surgery with catheter fixation restored the catheter function, enabling continued continuous ambulatory peritoneal dialysis (CAPD) with favorable outcomes. Conclusions: Our findings indicate that healthcare providers should consider fallopian tube wrapping as a potential cause of catheter dysfunction. Prompt consideration and utilization of laparoscopy with catheter fixation can play an important role in restoring catheter function and improving patient outcomes.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39095056

RESUMO

OBJECTIVE: To evaluate the image quality and diagnostic performance of pulmonary subsolid nodules on conventional iterative algorithms, virtual monoenergetic images (VMIs), and electron density mapping (EDM) using a dual-layer detector spectral CT (DLSCT). METHODS: This retrospective study recruited 270 patients who underwent DLSCT scan for lung nodule screening or follow-up. All CT examinations with subsolid nodules (pure ground-glass nodules [GGNs] or part-solid nodules) were reconstructed with hybrid and model-based iterative reconstruction, VMI at 40, 70, 100, and 130 keV levels, and EDM. The CT number, objective image noise, signal-to-noise ratio, contrast-to-noise ratio, diameter, and volume of subsolid nodules were measured for quantitative analysis. The overall image quality, image noise, visualization of nodules, artifact, and sharpness were subjectively rated by 2 thoracic radiologists on a 5-point scale (1 = unacceptable, 5 = excellent) in consensus. The objective image quality measurements, diameter, and volume were compared among the 7 groups with a repeated 1-way analysis of variance. The subjective scores were compared with Kruskal-Wallis test. RESULTS: A total of 198 subsolid nodules, including 179 pure GGNs, and 19 part-solid nodules were identified. Based on the objective analysis, EDM had the highest signal-to-noise ratio (164.71 ± 133.60; P < 0.001) and contrast-to-noise ratio (227.97 ± 161.96; P < 0.001) among all image sets. Furthermore, EDM had a superior mean subjective rating score (4.80 ± 0.42) for visualization of GGNs compared to other reconstructed images (all P < 0.001), although the model-based iterative reconstruction had superior subjective scores of overall image quality. For pure GGNs, the measured diameter and volume did not significantly differ among different reconstructions (both P > 0.05). CONCLUSIONS: EDM derived from DLSCT enabled improved image quality and lesion conspicuity for the evaluation of lung subsolid nodules compared to conventional iterative reconstruction algorithms and VMIs.

3.
Entropy (Basel) ; 26(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39056922

RESUMO

The existing segmentation-based scene text detection methods mostly need complicated post-processing, and the post-processing operation is separated from the training process, which greatly reduces the detection performance. The previous method, DBNet, successfully simplified post-processing and integrated post-processing into a segmentation network. However, the training process of the model took a long time for 1200 epochs and the sensitivity to texts of various scales was lacking, leading to some text instances being missed. Considering the above two problems, we design the text detection Network with Binarization of Hyperbolic Tangent (HTBNet). First of all, we propose the Binarization of Hyperbolic Tangent (HTB), optimized along with which the segmentation network can expedite the initial convergent speed by reducing the number of epochs from 1200 to 600. Because features of different channels in the same scale feature map focus on the information of different regions in the image, to better represent the important features of all objects in the image, we devise the Multi-Scale Channel Attention (MSCA). Meanwhile, considering that multi-scale objects in the image cannot be simultaneously detected, we propose a novel module named Fused Module with Channel and Spatial (FMCS), which can fuse the multi-scale feature maps from channel and spatial dimensions. Finally, we adopt cross-entropy as the loss function, which measures the difference between predicted values and ground truths. The experimental results show that HTBNet, compared with lightweight models, has achieved competitive performance and speed on Total-Text (F-measure:86.0%, FPS:30) and MSRA-TD500 (F-measure:87.5%, FPS:30).

4.
Entropy (Basel) ; 26(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39056938

RESUMO

Non-Euclidean data, such as social networks and citation relationships between documents, have node and structural information. The Graph Convolutional Network (GCN) can automatically learn node features and association information between nodes. The core ideology of the Graph Convolutional Network is to aggregate node information by using edge information, thereby generating a new node feature. In updating node features, there are two core influencing factors. One is the number of neighboring nodes of the central node; the other is the contribution of the neighboring nodes to the central node. Due to the previous GCN methods not simultaneously considering the numbers and different contributions of neighboring nodes to the central node, we design the adaptive attention mechanism (AAM). To further enhance the representational capability of the model, we utilize Multi-Head Graph Convolution (MHGC). Finally, we adopt the cross-entropy (CE) loss function to describe the difference between the predicted results of node categories and the ground truth (GT). Combined with backpropagation, this ultimately achieves accurate node classification. Based on the AAM, MHGC, and CE, we contrive the novel Graph Adaptive Attention Network (GAAN). The experiments show that classification accuracy achieves outstanding performances on Cora, Citeseer, and Pubmed datasets.

5.
Comput Biol Med ; 179: 108844, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981214

RESUMO

This review delves into the burgeoning field of explainable artificial intelligence (XAI) in the detection and analysis of lung diseases through vocal biomarkers. Lung diseases, often elusive in their early stages, pose a significant public health challenge. Recent advancements in AI have ushered in innovative methods for early detection, yet the black-box nature of many AI models limits their clinical applicability. XAI emerges as a pivotal tool, enhancing transparency and interpretability in AI-driven diagnostics. This review synthesizes current research on the application of XAI in analyzing vocal biomarkers for lung diseases, highlighting how these techniques elucidate the connections between specific vocal features and lung pathology. We critically examine the methodologies employed, the types of lung diseases studied, and the performance of various XAI models. The potential for XAI to aid in early detection, monitor disease progression, and personalize treatment strategies in pulmonary medicine is emphasized. Furthermore, this review identifies current challenges, including data heterogeneity and model generalizability, and proposes future directions for research. By offering a comprehensive analysis of explainable AI features in the context of lung disease detection, this review aims to bridge the gap between advanced computational approaches and clinical practice, paving the way for more transparent, reliable, and effective diagnostic tools.

6.
Huan Jing Ke Xue ; 45(7): 3995-4005, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022947

RESUMO

Danjiangkou Reservoir is a critical water source for the South-to-North Water Diversion Project, which harbors a diverse bacterioplankton community with varying depths, and the understanding of its nitrogen and phosphorus cycle and associated driving factors remains limited. In this study, we selected five ecological sites within Danjiangkou Reservoir and conducted metagenomics analysis to investigate the vertical distribution of bacterioplankton communities in the surface, middle, and bottom layers. Furthermore, we analyzed and predicted the function of nitrogen and phosphorus cycles, along with their driving factors. Our findings revealed the dominance of Proteobacteria, Actinobacteria, and Planctomycetes in the Danjiangkou Reservoir. Significant differences were observed in the structure of bacterioplankton communities across different depths, with temperature (T), oxidation-reduction potential (ORP), dissolved oxygen (DO), and Chla identified as primary factors influencing the bacterioplankton composition. Analysis of nitrogen cycle functional genes identified 39 genes, including gltB, glnA, gltD, gdhA, NRT, etc., which were involved in seven main pathways, encompassing nitrogen fixation, nitrification, denitrification, and dissimilatory nitrate reduction. Phosphorus cycle function gene analysis identified 54 genes, including pstS, ppx-gppA, glpQ, ppk1, etc., primarily participating in six main pathways, including organic P mineralization, inorganic P solubilization, and regulatory. Cluster analysis indicated that different depths were significant factors influencing the composition and abundance of nitrogen and phosphorus cycle functional genes. The composition and abundance of nitrogen and phosphorus cycle functional genes in the surface and bottom layers differed and were generally higher than those in the middle layer. Deinococcus, Hydrogenophaga, Limnohabitans, Clavibacter, and others were identified as key species involved in the nitrogen and phosphorus cycle. Additionally, we found significant correlations between nitrogen and phosphorus cycle functional genes and environmental factors such as DO, pH, T, total dissolved solids (TDS), electrical conductivity (EC), and Chla. Furthermore, the content of these environmental factors exhibited depth-related changes in the Danjiangkou Reservoir, resulting in a distinct vertical distribution pattern of bacterioplankton nitrogen and phosphorus cycle functional genes. Overall, this study sheds light on the composition, function, and influencing factors of bacterioplankton communities across different layers of Danjiangkou Reservoir, offering valuable insights for the ecological function and diversity protection of bacterioplankton in this crucial reservoir ecosystem.


Assuntos
Nitrogênio , Fósforo , Plâncton , Fósforo/metabolismo , China , Nitrogênio/metabolismo , Plâncton/genética , Plâncton/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Proteobactérias/genética , Ciclo do Nitrogênio , Actinobacteria/genética , Actinobacteria/metabolismo , Genes Bacterianos
7.
J Immunother ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005046

RESUMO

Tumor immunotherapy has recently gained popularity as a cancer treatment strategy. The molecular mechanism controlling immune infiltration in lung adenocarcinoma (LUAD) cells, however, is not well characterized. Investigating the immune infiltration modulation mechanism in LUAD is crucial. LUAD patient samples were collected, and HES6 expression and immune infiltration level of CD8+ T cells in patient tissues were analyzed. Bioinformatics was utilized to identify binding relationship between E2F1 and HES6, and enrichment pathway of HES6. The binding of E2F1 to HES6 was verified using dual-luciferase and ChIP experiments. HES6 and E2F1 expression in LUAD cells was detected. LUAD cells were co-cultured with CD8+ T cells, and the CD8+ T cell killing level, IFN-γ secretion, and CD8+ T-cell chemotaxis level were measured. Expression of key genes involved in oxidative phosphorylation was detected, and the oxygen consumption rate of LUAD cells was assessed. A mouse model was constructed to assay Ki67 expression and apoptosis in tumor tissue. High expression of HES6 promoted CD8+ T-cell infiltration and enhanced T-cell killing ability through oxidative phosphorylation. Further bioinformatics analysis, molecular experiments, and cell experiments verified that E2F1 negatively regulated HES6 by oxidative phosphorylation, which suppressed CD8+ T-cell immune infiltration. In addition, in vivo assays illustrated that silencing HES6 repressed tumor cell immune evasion. E2F1 inhibited HES6 transcription, thereby mediating oxidative phosphorylation to suppress immune infiltration of CD8+ T cells in LUAD. The biological functions and signaling pathways of these genes were analyzed, which may help to understand the possible mechanisms regulating immune infiltration in LUAD.

8.
PLoS Biol ; 22(7): e3002658, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991106

RESUMO

Tetrapods (amphibians, reptiles, birds, and mammals) are model systems for global biodiversity science, but continuing data gaps, limited data standardisation, and ongoing flux in taxonomic nomenclature constrain integrative research on this group and potentially cause biased inference. We combined and harmonised taxonomic, spatial, phylogenetic, and attribute data with phylogeny-based multiple imputation to provide a comprehensive data resource (TetrapodTraits 1.0.0) that includes values, predictions, and sources for body size, activity time, micro- and macrohabitat, ecosystem, threat status, biogeography, insularity, environmental preferences, and human influence, for all 33,281 tetrapod species covered in recent fully sampled phylogenies. We assess gaps and biases across taxa and space, finding that shared data missing in attribute values increased with taxon-level completeness and richness across clades. Prediction of missing attribute values using multiple imputation revealed substantial changes in estimated macroecological patterns. These results highlight biases incurred by nonrandom missingness and strategies to best address them. While there is an obvious need for further data collection and updates, our phylogeny-informed database of tetrapod traits can support a more comprehensive representation of tetrapod species and their attributes in ecology, evolution, and conservation research.


Assuntos
Biodiversidade , Aves , Mamíferos , Filogenia , Répteis , Animais , Répteis/classificação , Anfíbios , Ecossistema , Viés , Humanos , Tamanho Corporal
9.
Behav Brain Res ; 472: 115152, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032868

RESUMO

The high rate of relapse to compulsive methamphetamine (MA)-taking and seeking behaviors after abstinence constitutes a major obstacle to the treatment of MA addiction. Perineuronal nets (PNNs), essential components of the extracellular matrix, play a critical role in synaptic function, learning, and memory. Abnormalities in PNNs have been closely linked to a series of neurological diseases, such as addiction. However, the exact role of PNNs in MA-induced related behaviors remains elusive. Here, we established a MA-induced conditioned place preference (CPP) paradigm in female mice and found that the number and average optical density of PNNs increased significantly in the medial prefrontal cortex (mPFC) of mice during the acquisition, extinction, and reinstatement stages of CPP. Notably, the removal of PNNs in the mPFC via chondroitinase ABC (ChABC) before extinction training not only facilitated the extinction of MA-induced CPP and attenuated the relapse of extinguished MA preference but also significantly reduced the activation of c-Fos in the mPFC. Similarly, the ablation of PNNs in the mPFC before reinstatement markedly lessened the reinstatement of MA-induced CPP, which was accompanied by the decreased expression of c-Fos in the mPFC. Collectively, our results provide more evidence for the implication of degradation of PNNs in facilitating extinction and preventing relapse of MA-induced CPP, which indicate that targeting PNNs may be an effective therapeutic option for MA-induced CPP memories.

10.
ACS Nano ; 18(28): 18758-18768, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38965054

RESUMO

Polyanionic cathodes have attracted extensive research interest for Na-ion batteries (NIBs) due to their moderate energy density and desirable cycling stability. However, these compounds suffer from visible capacity fading and significant voltage decay upon the rapid sodium storage process, even if modified through nanoengineering or carbon-coating routes, leading to limited applications in NIBs. Herein, the Na3(VOPO4)2F cathode material with dominantly exposed {001} active facets is demonstrated by a topochemical synthesis route. Owing to the rational geometrical structure design and thereby directly shortening Na diffusion distance, the electrode delivers a reversible capacity of ∼129 mA h g-1 even at a high rate of 10 C, which is very close to the theoretical capacity of 132 mA h g-1, achieving a high energy density of ∼452 W h kg-1 coupled with a high-power density of 4660 W kg-1. When further served as a cathode for nonaqueous, aqueous-based, and solid-state full NIBs, respectively, our designed Na3(VOPO4)2F always enables superior electrochemical performance due to favorable kinetics.

11.
Neuropharmacology ; 258: 110089, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033904

RESUMO

Autism spectrum disorder (ASD) is neurodevelopmental disorder with a high incidence rate, characterized by social deficits and repetitive behaviors. There is currently no effective management available to treat the core symptoms of ASD; however, oxidative stress has been implicated in its pathogenesis. Edaravone (EDA), a free-radical scavenger, is used to treat amyotrophic lateral sclerosis (ALS) and acute ischemic stroke (AIS). Here, we hypothesized that an oral formula of EDA may have therapeutic efficacy in the treatment of core ASD symptoms. A rat model of autism was established by prenatal exposure to valproic acid (VPA), and the offsprings were orally treated with EDA at low (3 mg/kg), medium (10 mg/kg), and high (30 mg/kg) doses once daily for 28 days starting from postnatal day 25 (PND25). Oral EDA administration alleviated the core symptoms in VPA rats in a dose-dependent manner, including repetitive stereotypical behaviors and impaired social interaction. Furthermore, oral administration of EDA significantly reduced oxidative stress in a dose-dependent manner, as evidenced by a reduction in oxidative stress markers and an increase in antioxidants in the blood and brain. In addition, oral EDA significantly attenuated downstream pathologies, including synaptic and mitochondrial damage in the brain. Proteomic analysis further revealed that EDA corrected the imbalance in brain oxidative reduction and mitochondrial proteins induced by prenatal VPA administration. Overall, these findings demonstrate that oral EDA has therapeutic potential for ASD by targeting the oxidative stress pathway of disease pathogenesis and paves the way towards clinical studies.

12.
J Chem Phys ; 161(2)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-38980094

RESUMO

Methanol steam reforming (MSR) is an attractive route for producing clean energy hydrogen. PdZn alloys are extensively studied as potential MSR catalysts for their stability and high CO2 selectivity. Here, we investigated the reaction mechanism using density functional calculations, mean-field microkinetic modeling (MF-MKM), and kinetic Monte Carlo (kMC) simulations. To overcome the over-underestimation of CO2 selectivity by log-kMC, an ads-kMC algorithm is proposed in which the adsorption/desorption rate constants were reduced under certain requirements and the diffusion process was treated by redistributing surface species each time an event occured. The simulations show that the dominant pathway to CO2 at low temperatures is CH3OH → CH3O → CH2O → H2COOH → H2COO → HCOO → CO2. The ads-kMC predicted OH coverage is 2-3 times that of MF-MKM, while they produce similar coverage for other species. Analyses indicate that surface OH promotes the dehydrogenation of CH3OH, CH3O, and H2COOH significantly and plays a key role in the MSR process. The dissociation of water/methanol is the most important rate-limiting/rate-inhibiting step. The CO2 selectivity obtained by the two methods is close to each other and consistent with the experimental trend with temperature. Generally, the ads-kMC results agree with the MF-MKM ones, supporting the previous finding that kMC and MF-MKM predict similar results if the diffusion is very fast and adsorbate interactions are neglected. The present study sheds light on the MSR process on PdZn alloys, and the proposed scheme to overcome the stiff problems in kMC simulations is worthy of being extended to other systems.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124712, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38950476

RESUMO

In this study, a series of tetraphenylethene-containing gold(I) complexes with different auxiliary ligands have been synthesized. These complexes were characterized using a variety of techniques including nuclear magnetic resonance spectroscopy, mass spectrometry, and single crystal X-ray diffraction. Their aggregation-induced emission (AIE) behaviors were investigated through ultraviolet/visible and photoluminescence spectrum analyses, and dynamic light scattering measurements. Meanwhile, their mechanofluorochromic properties were also studied via solid-state photoluminescence spectroscopy. Intriguingly, all these mononuclear gold(I) molecules functionalized by tetraphenylethene group demonstrated AIE phenomena. Furthermore, five gold(I) complexes possessing diverse auxiliary ligands exhibited distinct fluorescence changes in response to mechanical grinding. For luminogens 2-5, their solids showed reversible mechanofluorochromic behaviors triggered by the mutual transformation of crystalline and amorphous states, while for luminogen 1, blue-green-cyan three-color solid fluorescence conversion was realized by sequential mechanical grinding and solvent fumigation. Based on this stimuli-responsive tricolored fluorescence feature of 1, an information encryption system was successfully constructed.

14.
Water Res ; 262: 122120, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39083900

RESUMO

Saltmarshes along the Chinese coast are threatened by the invasion of Spartina alterniflora (S. alterniflora). This study was carried out in the Andong Shoal, Hangzhou Bay, China, with the aim of comprehending the intricate impacts of S. alterniflora invasion on greenhouse gases (GHG) production and emissions. To address this issue, we thoroughly examined the chemistry of dissolved organic matter (DOM) and the rate of surface water-porewater interaction. Porewater and surface water samples were collected from farm land, S. alterniflora invaded areas, and Scirpus mariqueter (S. mariqueter) dominated areas. The findings indicated that the invasion of S. alterniflora impeded the interaction between surface water and porewater, resulting in reduced porewater exchange rates within its affected region (0.015-0.440 cm d-1), in contrast to areas dominated by S. mariqueter (9.635-18.232 cm d-1). The invasion also increased dissolved organic carbon concentration in porewater and created a stable and closed soil environment that resulted in DOM with smaller molecule sizes and higher humification levels. The presence of high tryptophan-like fluorescent DOM caused an increase in the production of methane and carbon dioxide in S. alterniflora invaded area. However, both limited surface-porewater exchange and significant differences in GHG concentrations between porewater and surface water suggested that the aerenchyma tissues of S. alterniflora may play an important role in transporting GHG from soil to the atmosphere.

15.
Pestic Biochem Physiol ; 203: 106021, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084780

RESUMO

The role of melatonin (MT), an essential phytohormone controlling the physiological and biochemical reactions of plants to biotic and abiotic stress, in alleviating pesticide phytotoxicity remains unclear. This study explores the effects of MT (0 and 200 mg/L) and six doses of fluroxypyr-meptyl (FLUME) (0-0.14 mg/L) on the physiological response of rice (Oryza sativa). FLUME exposure inhibited the growth of rice seedlings, with MT treatment ameliorating this effect. To determine the biochemical processes and catalytic events involved in FLUME breakdown in rice, six rice root and shoot libraries exposed to either FLUME or FLUME-MT were generated and then subjected to RNA-Seq-LC-Q-TOF-HRMS/MS analyses. The results showed that 1510 root genes and 139 shoot genes exhibited higher upregulation in plants treated with an ecologically realistic FLUME concentration and MT than in those treated with FLUME alone. Gene enrichment analysis revealed numerous FLUME-degradative enzymes operating in xenobiotic tolerance to environmental stress and molecular metabolism. Regarding the FLUME degradation process, certain differentially expressed genes were responsible for producing important enzymes, such as cytochrome P450, glycosyltransferases, and acetyltransferases. Four metabolites and ten conjugates in the pathways involving hydrolysis, malonylation, reduction, glycosylation, or acetylation were characterized using LC-Q-TOF-HRMS/MS to support FLUME-degradative metabolism. Overall, external application of MT can increase rice tolerance to FLUME-induced oxidative stress by reducing phytotoxicity and FLUME accumulation. This study provides insights into MT's role in facilitating FLUME degradation, with potential implications for engineering genotypes supporting FLUME degradation in paddy crops.


Assuntos
Melatonina , Oryza , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Melatonina/farmacologia , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
16.
Langmuir ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078371

RESUMO

A fundamental understanding of the fluid flow mechanism during CH4 hydrate dissociation in nanoscale clayey sediments from the molecular perspective can provide invaluable information for macroscale natural gas hydrate (NGH) exploration. In this work, the fluid flow behaviors of the decomposed gas from CH4 hydrate within clayey nanopores under different temperature conditions are revealed by molecular dynamics (MD) simulation. The simulation results indicate that the key influencing factors of gas-water flow in nanoscale clayey sediments include the diffusion and the random migration of gas molecules. The influencing mechanisms of fluid flow in nanopores are closely related with the temperature conditions. Under a low temperature condition, the gas diffusion process is impeded by the secondary hydrate formation, leading to the decline in gas transport velocity within nanopores. However, it is still noteworthy that the gas-water fluid flow channels are not completely blocked by the occurrence of secondary hydrate. Under a high temperature condition, the significant phenomenon of water migration during gas flow is observed, which can be ascribed to the gas-liquid entrainment effect in nanopores of the clayey sediment. These results may provide valuable implications and fundamental evidence for improving gas production efficiency in future field tests of NGH exploitation in marine sediments.

17.
Cont Lens Anterior Eye ; : 102282, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39069400

RESUMO

PURPOSE: To investigate the potential benefit of combining orthokeratology (OK) lenses with 0.05% atropine ophthalmic solution on the efficacy of myopia control in the fast progressors of OK. METHODS: Average axial length (AL) elongation of both eyes in 70 participants using OK lenses alone or OK lenses combined with 0.05 % atropine ophthalmic solution was retrospectively reviewed. During the observation period (phase 1), all participants exhibited an AL elongation that exceeded 0.15 mm over a 6-month period or 0.3 mm over a 12-month period. Subsequently, the participants were divided into two groups: one group received nightly 0.05 % atropine ophthalmic solution in addition to OK lenses for another 1 year (OKA), while the other group continued using OK lenses alone (phase 2). The changes in AL elongation over time and the differences in AL elongation between the two groups were then compared. RESULTS: The baseline and phase 1 demographics and characteristics of the participants was similar between the two groups (all p > 0.05). when considering a one-year timeframe, the OKA group displayed a significantly less AL elongation compared to the OK group (0.14 ± 0.13 mm vs 0.27 ± 0.12 mm, p < 0.001). Within the OKA group, the AL elongation in the second half of the year was significantly faster than in the first half (0.12 ± 0.11 mm vs 0.02 ± 0.14 mm, p = 0.01). Conversely, there was no significant difference in AL elongation between the OK group in the first and second half of the year (0.12 ± 0.07 mm vs 0.15 ± 0.08 mm, p = 0.71). The combination of 0.05 % atropine ophthalmic solution had a significant effect on 1-year AL elongation (p < 0.001). CONCLUSIONS: This study provided preliminary evidence that the combination of OK lenses and 0.05% atropine ophthalmic solution can significantly enhance the effectiveness of myopia control.

18.
Artigo em Inglês | MEDLINE | ID: mdl-39079168

RESUMO

Dual-energy X-ray absorptiometry (DXA) is more available than gold-standard magnetic resonance imaging (MRI), but DXA ability to estimate abdominal skeletal muscle mass (SMM) is unknown. DXA-derived abdominal fat-free mass (FFM; Hologic QDR2000 or QDR4500w) was correlated with single-slice MRI SMM at L4 (N = 69; r QDR2000=0.71, QDR4500w=0.69; p<.0001). Linear regression to predict SMM, including DXA FFM, BMI, and age, resulted in an R-squared of 0.72 and 0.65 for QDR2000 and QDR4500. Bland-Altman limits of agreement were ±21g and ±31g for 2-3 standard deviations from the mean difference. DXA predicted abdominal SSM is a moderate proxy for MRI abdominal SMM.

19.
Adv Sci (Weinh) ; : e2309712, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887155

RESUMO

Helicobacter pylori (H. pylori) infection is the primary risk factor for the pathogenesis of gastric cancer (GC). N6-methyladenosine (m6A) plays pivotal roles in mRNA metabolism and hnRNPA2B1 as an m6A reader is shown to exert m6A-dependent mRNA stabilization in cancer. This study aims to explore the role of hnRNPA2B1 in H. pylori-associated GC and its novel molecular mechanism. Multiple datasets and tissue microarray are utilized for assessing hnRNPA2B1 expression in response to H. pylori infection and its clinical prognosis in patients with GC. The roles of hnRNPA2B1 are investigated through a variety of techniques including glucose metabolism analysis, m6A-epitranscriptomic microarray, Ribo-seq, polysome profiling, RIP-seq. In addition, hnRNPA2B1 interaction with poly(A) binding protein cytoplasmic 1 (PABPC1) is validated using mass spectrometry and co-IP. These results show that hnRNPA2B1 is upregulated in GC and correlated with poor prognosis. H. pylori infection induces hnRNPA2B1 upregulation through recruiting NF-κB to its promoter. Intriguingly, cytoplasm-anchored hnRNPA2B1 coordinated PABPC1 to stabilize its relationship with cap-binding eIF4F complex, which facilitated the translation of CIP2A, DLAT and GPX1 independent of m6A modification. In summary, hnRNPA2B1 facilitates the non-m6A translation of epigenetic mRNAs in GC progression by interacting with PABPC1-eIF4F complex and predicts poor prognosis for patients with GC.

20.
J Thorac Dis ; 16(5): 3291-3305, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38883668

RESUMO

Background: Chylothorax is a seldom encountered complication following lung surgery. However, due to the widespread practice of lung surgery, postoperative complications have inevitably arisen. Chylothorax significantly affects a patient's discharge and recovery. This study investigates the risk factors for postoperative chylothorax at our center and analyzes various treatment modalities and prognostic outcomes. Methods: A retrospective analysis was conducted on all postoperative lung resections performed between January 2018 to August 2021 that met the inclusion criteria. Inclusion criteria covered patients undergoing various thoracic surgeries for lung conditions, while exclusion criteria included postoperative referrals for surgeries unrelated to lung tumors. Results: Postoperative chylothorax occurred in 42 of 5,706 patients after lung surgery. General information and disease-related data of the chylothorax and control group were analyzed by univariate and multivariate analyses. Multivariate analysis showed that serum albumin before surgery [odds ratio (OR) =0.86, 95% confidence interval (CI): 0.81-0.91, P<0.001], γ-glutamyl transferase level before surgery (after logarithmic transformation, OR =1.01, 95% CI: 1.00-1.01, P=0.01), squamous cell carcinoma (OR =2.77, 95% CI: 1.37-5.6, P=0.008), right mediastinal lymph node dissection (OR =3.15, 95% CI: 1.62-6.14, P<0.001) were independent risk factors for postoperative chylothorax. Among the 42 cases of postoperative chylothorax, 26 patients were improved with conservative treatments, and 6 patients were improved with chemical pleurodesis. Eight patients with postoperative chylothorax underwent thoracoscopic thoracic duct ligation. Three patients experienced severe postoperative complications: one was discharged after prolonged treatment, while the remaining two either succumbed or were discharged against medical advice. Conclusions: The incidence of chylothorax after lung surgery closely correlates with the intraoperative trauma and nutritional status of patients during the perioperative period. The majority of patients with postoperative chylothorax experienced relief through conservative measures, somatostatin administration, and chemical pleurodesis. Nevertheless, substantial postoperative chylothorax necessitated surgical intervention, involving thoracic duct ligation or drug pleurodesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...