Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(7): 217, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888748

RESUMO

CONTEXT: SARS-CoV-2, responsible for COVID-19, has led to over 500 million infections and more than 6 million deaths globally. There have been limited effective treatments available. The study aims to find a drug that can prevent the virus from entering host cells by targeting specific sites on the virus's spike protein. METHOD: We examined 13,397 compounds from the Malaria Box library against two specific sites on the spike protein: the receptor-binding domain (RBD) and a predicted cryptic pocket. Using virtual screening, molecular docking, molecular dynamics, and MMPBSA techniques, they evaluated the stability of two compounds. TCMDC-124223 showed high stability and binding energy in the RBD, while TCMDC-133766 had better binding energy in the cryptic pocket. The study also identified that the interacting residues are conserved, which is crucial for addressing various virus variants. The findings provide insights into the potential of small molecules as drugs against the spike protein.


Assuntos
Antivirais , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/efeitos dos fármacos , Humanos , Sítios de Ligação , Antivirais/química , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Ligação Proteica , Domínios Proteicos , COVID-19/virologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
2.
J Biomol Struct Dyn ; 38(11): 3225-3234, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31411538

RESUMO

Nipah virus is a pathogen considered highly infectious, and its lethality can cause between 40% and 70% of deaths in those infected. At present, no effective treatment is available which results in an imperative need to explore new approaches to the search for drugs. Through virtual screening techniques, docking and molecular dynamics, 183 ligands were evaluated against the Nipah virus glycoprotein (NiV-G), involved throughout the process of virus entry to the host cell, resulting in a good target for blocking the infection. Of the 183 drugs computationally screened, three of them (MMV020537, MMV688888 and MMV019838) were found to be potential inhibitors of NiV-G. Their calculated dissociation constants were 0.03 nM, 2.18 nM and 31.61 nM, respectively. Molecular dynamics studies confirm their stability binding modes in the active site of the protein. These potential inhibitors can be used later as leads for the development of new drugs that allow effective treatment of the disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Vírus Nipah , Ligantes , Simulação de Dinâmica Molecular , Internalização do Vírus
3.
Comput Biol Chem ; 83: 107157, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31751887

RESUMO

Leishmaniosis, caused by intracellular parasites of the genus Leishmania, has become a serious public health problem around the world, and for which there are currently extensive limitations. In this work, a theoretical model was proposed for the development of a multi-epitope vaccine. The protein GP63 of the parasite was selected for epitopes prediction, due to its important biological role for the infection process and abundance. IEDB tools were used to determine epitopes B and T in Leishmania braziliensis; besides, other conserved epitopes in three species were selected. To improve immunogenicity, 50S ribosomal protein L7 / L12 (ID: P9WHE3) was used as a domain of adjuvant in the assembly process. The folding arrangement of the vaccine was obtained through homologous modeling multi-template with MODELLER v9.21, and a Ramachandran plot analysis was done. Furthermore, physicochemical properties were described with the ProtParam tool and secondary structure prediction combining GOR-IV and SOPMA tools. Finally, a molecular dynamics simulation (50 ns) was performed to establish flexibility and conformational changes. The analysis of the results indicates high conservancy in the epitopes predicted among the four species. Moreover, Ramachandran plot, physicochemical parameters, and secondary structure prediction suggest a stable conformation of the vaccine, after a minimum conformational change that was evaluated with the free energy landscape. The conformational change does not drive any substantial change for epitope exposition on the surface. The vaccine proposed could be tested experimentally to guide new approaches in the development of pan-vaccines; vaccines with regions conserved in multiple species.


Assuntos
Leishmania/imunologia , Metaloendopeptidases/imunologia , Simulação de Dinâmica Molecular , Vacinas/imunologia , Epitopos/química , Epitopos/imunologia , Metaloendopeptidases/química , Conformação Proteica , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...