Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891304

RESUMO

Citrus Huanglongbing (HLB), caused by the phloem-inhibiting bacterium Candidatus Liberibacter asiaticus (CLas), is the most devastating citrus disease, intimidating citrus production worldwide. Although commercially cultivated citrus cultivars are vulnerable to CLas infection, HLB-tolerant attributes have, however, been observed in certain citrus varieties, suggesting a possible pathway for identifying innate defense regulators that mitigate HLB. By adopting transcriptome and small RNAome analysis, the current study compares the responses of HLB-tolerant lemon (Citrus limon L.) with HLB-susceptible Shatangju mandarin (Citrus reticulata Blanco cv. Shatangju) against CLas infection. Transcriptome analysis revealed significant differences in gene expression between lemon and Shatangju. A total of 1751 and 3076 significantly differentially expressed genes were identified in Shatangju and lemon, respectively. Specifically, CLas infected lemon tissues demonstrated higher expressions of genes involved in antioxidant enzyme activity, protein phosphorylation, carbohydrate, cell wall, and lipid metabolism than Shatangju. Wet-lab experiments further validated these findings, demonstrating increased antioxidant enzyme activity in lemon: APX (35%), SOD (30%), and CAT (64%) than Shatangju. Conversely, Shatangju plants exhibited higher levels of oxidative stress markers like H2O2 (44.5%) and MDA content (65.2%), alongside pronounced ion leakage (11.85%), than lemon. Moreover, microscopic investigations revealed that CLas infected Shatangju phloem exhibits significantly more starch and callose accumulation than lemon. Furthermore, comparative sRNA profiles revealed the potential defensive regulators for HLB tolerance. In Shatangju, increased expression of csi-miR166 suppresses the expression of disease-resistant proteins, leading to inadequate defense against CLas. Conversely, reduced expression of csi-miR166 in lemon plants enables them to combat HLB by activating disease-resistance proteins. The above findings indicate that when infected with CLas, lemon exhibits stronger antioxidative activity and higher expression of disease-resistant genes, contributing to its enhanced tolerance to HLB. In contrast, Shatangju shows lower antioxidative activity, reduced expression of disease-resistant genes, significant ion leakage, and extensive callose deposition, possibly related to damage to plant cell structure and blockage of phloem sieve tubes, thereby promoting the development of HLB symptoms.

2.
Arch Virol ; 169(5): 105, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637359

RESUMO

In this study, we identified a novel double-strand RNA (dsRNA) mycovirus in Pyricularia oryzae, designated "Magnaporthe oryzae partitivirus 4" (MoPV4). The genome of MoPV4 consists of a dsRNA-1 segment encoding an RNA-dependent RNA polymerase (RdRP) and a dsRNA-2 segment encoding a capsid protein (CP). Phylogenetic analysis indicated that MoPV4 belongs to the genus Gammapartitivirus within family Partitiviridae. The particles of MoPV4 are isometric with a diameter of about 32.4 nm. Three-dimensional structure predictions indicated that the RdRP of MoPV4 forms a classical right-handed conformation, while the CP has a reclining-V shape.


Assuntos
Ascomicetos , Micovírus , Vírus de RNA , RNA Viral/genética , Filogenia , Vírus de RNA/genética , Proteínas do Capsídeo/genética , RNA Polimerase Dependente de RNA/genética , Genoma Viral , Micovírus/genética , RNA de Cadeia Dupla/genética , Fases de Leitura Aberta
3.
Plant J ; 116(5): 1309-1324, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614043

RESUMO

Citrus production is severely threatened by the devastating Huanglongbing (HLB) disease globally. By studying and analyzing the defensive behaviors of an HLB-tolerant citrus cultivar 'Shatangju', we discovered that citrus can sense Candidatus Liberibacter asiaticus (CLas) infection and induce immune responses against HLB, which can be further strengthened by both endogenously produced and exogenously applied methyl salicylate (MeSA). This immune circuit is turned on by an miR2977-SAMT (encoding a citrus Salicylate [SA] O-methyltransferase) cascade, by which CLas infection leads to more in planta MeSA production and aerial emission. We provided both transgenic and multi-year trail evidences that MeSA is an effective community immune signal. Ambient MeSA accumulation and foliage application can effectively induce defense gene expression and significantly boost citrus performance. We also found that miRNAs are battle fields between citrus and CLas, and about 30% of the differential gene expression upon CLas infection are regulated by miRNAs. Furthermore, CLas hijacks host key processes by manipulating key citrus miRNAs, and citrus employs miRNAs that coordinately regulate defense-related genes. Based on our results, we proposed that miRNAs and associated components are key targets for engineering or breeding resistant citrus varieties. We anticipate that MeSA-based management, either induced expression or external application, would be a promising tool for HLB control.


Assuntos
Citrus , MicroRNAs , Rhizobiaceae , Citrus/fisiologia , Doenças das Plantas , Melhoramento Vegetal , Salicilatos/metabolismo , Liberibacter/genética , MicroRNAs/genética , MicroRNAs/metabolismo
4.
Plants (Basel) ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684233

RESUMO

Although several protocols for genetic transformation of citrus have been published, it is highly desirable to further improve its efficiency. Here we report treatments of Agrobacterium cells and citrus explants prior to and during co-cultivation process to enhance transformation efficiency using a commercially used rootstock 'Carrizo' citrange [Citrus sinensis (L.) Osb. × Poncirius trifoliata (L.) Raf.] as a model plant. We found explants from light-grown seedlings exhibited higher transformation efficiency than those from etiolated seedlings. We pre-cultured Agrobacterium cells in a 1/10 MS, 0.5 g/L 2-(N-morpholino) ethanesulfonic acid (MES) and 100 µM acetosyringone liquid medium for 6 h at 25 °C before used to infect citrus explants. We incubated epicotyl segments in an MS liquid medium containing 13.2 µM 6-BA, 4.5 µM 2,4-D, 0.5 µM NAA for 3 h at 25 °C prior to Agrobacterium infection. In the co-cultivation medium, we added 30 µM paclobutrazol and 10 µM lipoic acid. Each of these treatments significantly increased the efficiencies of transformation up to 30.4% (treating Agrobacterium with acetosyringone), 31.8% (treating explants with cytokinin and auxin), 34.9% (paclobutrazol) and 38.6% (lipoic acid), respectively. When the three treatments were combined, we observed that the transformation efficiency was enhanced from 11.5% to 52.3%. The improvement of genetic transformation efficiency mediated by these three simple treatments may facilitate more efficient applications of transgenic and gene editing technologies for functional characterization of citrus genes and for genetic improvement of citrus cultivars.

5.
Front Plant Sci ; 12: 643971, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868341

RESUMO

Huanglongbing (HLB) is a destructive citrus bacterial disease caused by Candidatus Liberibacter asiaticus (Ca.Las) and cannot be cured by current pesticides. Root lesion and Tylenchulus semipenetrans juveniles were observed in HLB-affected citrus tree roots. We hypothesize that root treatment with fosthiazate (FOS) and Cupric-Ammonium Complex (CAC) will improve the root growth and inhibit HLB. CAC is a broad spectrum fungicide and can promote growth of crops. FOS kills Tylenchulus semipenetrans and protects roots from damage by harmful bacteria such as Ca.Las. After 90 days of combination treatment of FOS and CAC through root drenches, the citrus grew new roots and its leaves changed their color to green. The inhibition rate of Ca.Las reached more than 90%. During treatment process, the chlorophyll content and the root vitality increased 396 and 151%, respectively, and starch accumulation decreased by 88%. Transmission electron microscopy (TEM) and plant tissue dyeing experiments showed that more irregular swollen starch granules existed in the chloroplast thylakoid system of the HLB-infected leaves. This is due to the blocking of their secretory tissue by starch. TEM and flow cytometry experiments in vitro showed the synergistic effects of FOS and CAC. A transcriptome analysis revealed that the treatment induced the differential expression of the genes which involved 103 metabolic pathways. These results suggested that the cocktail treatment of FOS and CAC may effectively kill various pathogens including Ca.Las on citrus root and thus effectively control HLB.

6.
Plant Dis ; 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185520

RESUMO

Anthracnose fruit rot of litchi (Litchi chinensis Sonn.), caused by Colletotrichum spp., has been mainly associated with the C. acutatum species complex and C. gloeosporioides species complex (Farr and Rossman 2020). In June 2010, isolates of the C. acutatum species complex were isolated together with the C. gloeosporioides species complex from anthracnose lesions on litchi fruits (cv. Nuomici) obtained from a litchi orchard in Shenzhen (N 22.36°, E 113.58°), China. The symptoms typically appeared as brown lesions up to 25 mm in diameter, causing total fruit rot and sometimes fruit cracking. Based on the number of isolates we collected, the C. acutatum species complex appears less frequently on infected fruit compared to the C. gloeosporioides species complex. Since only the C. gloeosporioides species complex has been reported in China (Qi 2000; Ann et al. 2004), we focused on the C. acutatum species complex in this study. Pure cultures of fungal isolates were obtained by single-spore isolation. The isolate GBLZ10CO-001 was used for morphological characterization, molecular and phylogenetic analysis, and pathogenicity testing. Colonies were cultured on potato dextrose agar (PDA) at 25 ℃ for 7 days, circular, raised, cottony, gray or pale orange, with reverse carmine, and 39.6 to 44.7 mm in diameter. Conidia were 13.5 to 19 × 4 to 6 µm (mean ± SD = 15.9 ± 1.1 × 5.2 ± 0.3 µm, n = 50) in size, hyaline, smooth-walled, aseptate, straight, fusiform to cylindrical with both ends acute. Appressoria were 5.5 to 13.5 × 4.5 to 7.5 µm (mean ± SD = 7.6 ± 1.6 × 6.0 ± 0.7 µm, n = 50) in size, subglobose to elliptical, sometimes clavate or irregular, smooth-walled, with entire edge, sometimes undulate, pale to medium brown. These morphological characteristics were consistent with the descriptions of several Colletotrichum species belonging to the C. acutatum species complex, including C. fioriniae (Shivas and Tan 2009; Damm et al. 2012). For molecular identification, genomic DNA was extracted and the ribosomal internal transcribed spacer (ITS), partial sequences of the ß-tubulin (TUB2), actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase 1 (CHS-1), and histone3 (HIS3) genes were amplified and sequenced using the primer pairs ITS4/ITS5, T1/Bt2b, ACT512F/ACT783R, GDF1/GDR1, CHS-79F/CHS-354R, and CYLH3F/CYLH3R, respectively (White et al. 1990; Damm et al. 2012). The resulting sequences were submitted to GenBank (ITS: MN527186, TUB2: MT740310, ACT: MN532321, GAPDH: MN532427, CHS-1: MT740311, HIS3: MT740312). BLAST searches showed 98.70%-100% identity to the sequences of the C. fioriniae ex-holotype culture CBS 128517. The phylogram reconstructed from the combined dataset using MrBayes 3.2.6 (Ronquist et al. 2012) showed that isolate GBLZ10CO-001 clustered with C. fioriniae with high posterior probability. Koch's postulates were performed in the field to confirm pathogenicity. Isolate GBLZ10CO-001 was grown on PDA (25 ℃ for 7 days) to produce conidia. In June 2014, litchi fruits (cv. Nuomici) were sprayed with conidial suspensions (106 conidia/ml), with sterile water as blank controls, and each treatment inoculated at least 15 fruits. Inoculated fruits were covered by an adhesive-bonded fabric bag until the trial ended. After 31 days, typical symptoms were observed, while control fruits remained asymptomatic. The fungus was re-isolated from diseased fruits and identified as C. fioriniae according to the methods described above. To our knowledge, this is the first report of anthracnose fruit rot on litchi caused by C. fioriniae, one species of the C. acutatum species complex, in China. For the difficulty in distinguishing anthracnose caused by C. fioriniae from the C. gloeosporioides species complex just by the symptoms, and mixed infection usually occurring in the field, further investigations are required to reliably assess the potential threat posed by C. fioriniae for litchi production in China.

7.
J Invertebr Pathol ; 125: 45-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25593036

RESUMO

Citrus greening or Huanglongbing (HLB) is caused by the infection of Candidatus Liberibacter spp. in citrus plants. Since Asian citrus psyllid is the primary vector of this bacterial pathogen, the spread of HLB can be mitigated by suppressing Asian citrus psyllid populations in citrus groves using entomopathogens. To expand the current data on entomopathogens infecting Asian citrus psyllids, we isolated and characterized three different entomopathogens. Strains ZJLSP07, ZJLA08, and ZJLP09 infected the Asian citrus psyllid, Diaphorina citri Kuwayama, in Huangyan citrus groves. Based on molecular and morphological analyses, two were identified as Lecanicillium attenuatum and Lecanicillium psalliotae, and the third was recognized as an unidentified species of the genus, Lecanicillium. The corrected mortalities caused by strains ZJLSP07, ZJLA08 were 100% at 7days post-inoculation, while by ZJLP09 complete mortality occurred at 6days after inoculation, with 1.0×10(8)conidia/ml at 25°C and a relative humidity of 90% in the laboratory. Under the same condition, the corrected mortalities caused by strains ZJLSP07, ZJLA08 and ZJLP09 were 100%, 92.55% and 100%, respectively at 9days post-inoculation in the greenhouse. Our findings also revealed that these fungal strains infected D. citri using hyphae that penetrated deep into the insect tissues. Further, all three strains secreted the enzymes proteinases, chitinases and lipases with a potential to destroy insect tissues. Interestingly, strain ZJLP09 had an earlier invasion time and the highest levels of enzyme activities when compared to the other two strains. These findings have expanded the existing pool of entomopathogenic fungi that infect D. citri and can be potentially used for the management of D. citri populations.


Assuntos
Hemípteros/microbiologia , Hypocreales/fisiologia , Insetos Vetores/microbiologia , Rhizobiaceae/fisiologia , Animais , Citrus/microbiologia , Interações Hospedeiro-Patógeno , Hypocreales/isolamento & purificação , Hypocreales/patogenicidade , Controle Biológico de Vetores , Filogenia , Rhizobiaceae/isolamento & purificação
8.
Plant Dis ; 97(10): 1295-1300, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30722132

RESUMO

In this study, two polyclonal antibodies were produced against the Omp protein of 'Candidatus Liberibacter asiaticus'. First, omp genes were sequenced to exhibit 99.9% identity among 137 isolates collected from different geographical origins. Then, two peptides containing the hydrophobic polypeptide-transport-associated (POTRA) domain and ß-barrel domain, respectively, were identified on Omp protein. After that, these two peptides were overexpressed in Escherichia coli and purified by affinity chromatography to immunize the white rabbits. Finally, the antiserum was purified by affinity chromatography. The two Omp antibodies gave positive results (0.454 to 0.633, 1:1,600 dilution) in enzyme-linked immunosorbent assay against 'Ca. L. asiaticus'-infected samples collected from different geographical origins but revealed negative results against other pathogen-infected, nutrient-deficient and healthy samples. The antibody against the POTRA domain of Omp protein could detect 'Ca. L. asiaticus' in 45.7% of the symptomatic samples compared with a 56.2% detection rate with a polymerase chain reaction assay. These new antibodies will provide a very useful supplement to the current approaches to 'Ca. L. asiaticus' detection and also provide powerful research tools for tracking distribution of this pathogen in vivo.

9.
Mol Plant Microbe Interact ; 25(12): 1639-53, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22835275

RESUMO

Many bacterial, fungal, and oomycete species secrete necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) that trigger programmed cell death (PCD) and innate immune responses in dicotyledonous plants. However, how NLP induce such immune responses is not understood. Here, we show that silencing of the MAPKKKα-MEK2-WIPK mitogen-activated protein kinase (MAPK) cascade through virus-induced gene silencing compromises hydrogen peroxide accumulation and PCD induced by Nep1(Mo) from Magnaporthe oryzae. WIPK interacts with NbWRKY2, a transcription factor in Nicotiana benthamiana, in vitro and in vivo, suggesting an effector pathway that mediates Nep1(Mo)-induced cell death. Unexpectedly, salicylic acid-induced protein kinase (SIPK)- and NbWRKY2-silenced plants showed impaired Nep1(Mo)-induced stomatal closure, decreased Nep1(Mo)-promoted nitric oxide (NO) production in guard cells, and a reduction in Nep1(Mo)-induced resistance against Phytophthora nicotianae. Expression studies by real-time polymerase chain reaction suggested that the MEK2-WIPK-NbWRKY2 pathway regulated Nep1(Mo)triggered NO accumulation could be partly dependent on nitrate reductase, which was implicated in NO synthesis. Taken together, these studies demonstrate that the MAPK cascade is involved in Nep1(Mo)-triggered plant responses and MAPK signaling associated with PCD exhibits shared and distinct components with that for stomatal closure.


Assuntos
Proteínas Fúngicas/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Nicotiana/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Cálcio/análise , Cálcio/metabolismo , Morte Celular/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Homeostase , Peróxido de Hidrogênio/metabolismo , Magnaporthe/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Estômatos de Plantas/microbiologia , Plantas Geneticamente Modificadas , Plântula/citologia , Plântula/genética , Plântula/metabolismo , Plântula/microbiologia , Nicotiana/citologia , Nicotiana/metabolismo , Nicotiana/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Plant Cell ; 23(6): 2064-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21653195

RESUMO

The genome of the soybean pathogen Phytophthora sojae contains nearly 400 genes encoding candidate effector proteins carrying the host cell entry motif RXLR-dEER. Here, we report a broad survey of the transcription, variation, and functions of a large sample of the P. sojae candidate effectors. Forty-five (12%) effector genes showed high levels of polymorphism among P. sojae isolates and significant evidence for positive selection. Of 169 effectors tested, most could suppress programmed cell death triggered by BAX, effectors, and/or the PAMP INF1, while several triggered cell death themselves. Among the most strongly expressed effectors, one immediate-early class was highly expressed even prior to infection and was further induced 2- to 10-fold following infection. A second early class, including several that triggered cell death, was weakly expressed prior to infection but induced 20- to 120-fold during the first 12 h of infection. The most strongly expressed immediate-early effectors could suppress the cell death triggered by several early effectors, and most early effectors could suppress INF1-triggered cell death, suggesting the two classes of effectors may target different functional branches of the defense response. In support of this hypothesis, misexpression of key immediate-early and early effectors severely reduced the virulence of P. sojae transformants.


Assuntos
Phytophthora/genética , Phytophthora/metabolismo , Phytophthora/patogenicidade , Transcrição Gênica , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Animais , Morte Celular/fisiologia , Regulação da Expressão Gênica , Análise em Microsséries , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Alinhamento de Sequência , Glycine max/genética , Glycine max/imunologia , Glycine max/microbiologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...