Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(26): 10732-10737, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38875498

RESUMO

Measurement of infrared spectroscopy has emerged as a significant challenge for carbon materials due to the sampling problem. To overcome this issue, in this work, we performed measurements of IR spectra for carbon materials including C60, C70, diamond powders, graphene, and carbon nanotubes (CNTs) using the photoacoustic spectroscopy (PAS) technique; for comparison, the vibrational patterns of these materials were also studied with a conventional transmission method, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, or Raman spectroscopy. We found that the IR photoacoustic spectroscopy (IR-PAS) scheme worked successfully for these carbon materials, offering advantages in sampling. Interestingly, the profiles of IR-PAS spectra for graphene and CNTs exhibit negative bands using carbon black as the reference; the negative spectral information may provide valuable knowledge about the storage energy, production, structure, defect, or impurity of graphene and CNTs. Thus, this approach may open a new avenue for analyzing carbon materials.

2.
Nano Lett ; 23(21): 9811-9816, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37708490

RESUMO

Extreme ultraviolet (EUV) radiation with wavelengths of 10-121 nm has drawn considerable attention recently for its use in photolithography to fabricate nanoelectronic chips. This study demonstrates, for the first time, fluorescent nanodiamonds (FNDs) with nitrogen-vacancy (NV) centers as scintillators to image and characterize EUV radiations. The FNDs employed are ∼100 nm in size; they form a uniform and stable thin film on an indium-tin-oxide-coated slide by electrospray deposition. The film is nonhygroscopic and photostable and can emit bright red fluorescence from NV0 centers when excited by EUV light. An FND-based imaging device has been developed and applied for beam diagnostics of 50 nm and 13.5 nm synchrotron radiations, achieving a spatial resolution of 30 µm using a film of ∼1 µm thickness. The noise equivalent power density is 29 µW/(cm2 Hz1/2) for the 13.5 nm radiation. The method is generally applicable to imaging EUV radiation from different sources.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121645, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037552

RESUMO

Many icy bodies in the solar system have been found to contain a rich mixture of simple molecules on their surfaces. Similarly, comets are now known to be a reservoir of molecules ranging from water to amides. The processing of planetary/cometary ices leads to the synthesis of more complex molecules some of which may be the harbingers of life. Carbon disulphide (CS2) and ammonia (NH3) are known to be present on many icy satellites and comets. Reactions involving CS2 and NH3 may lead to the formation of larger molecules that are stable under space conditions. In this paper we present temperature dependent VUV spectra of pure CS2 in the ice phase, and of CS2 and NH3 ices deposited as (i) layered, and (ii) mixed ices at 10 K and warmed to higher temperatures until their sublimation. Pure CS2 ice is found to have a broad absorption in the VUV region, which is unique for a small molecule in the ice phase. In layered and mixed ices, the molecules tend to affect the phase change and sublimation temperature of each other and also leave behind a form of CS2-NH3 complex after thermal annealing. This study of CS2-NH3 ice systems in layered and mixed configurations would support the detection of these species/complexes in mixed molecular ices analogous to that on planetary and cometary surfaces.

4.
Sensors (Basel) ; 22(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35632048

RESUMO

Urinary tract infections (UTIs) are a leading hospital-acquired infection. Although timely detection of causative pathogens of UTIs is important, rapid and accurate measures assisting UTI diagnosis and bacterial determination are poorly developed. By reading infrared spectra of urine samples, Fourier-transform infrared spectroscopy (FTIR) may help detect urine compounds, but its role in UTI diagnosis remains uncertain. In this pilot study, we proposed a characterization method in attenuated total reflection (ATR)-FTIR spectra to evaluate urine samples and assessed the correlation between ATR-FTIR patterns, UTI diagnosis, and causative pathogens. We enrolled patients with a catheter-associated UTI in a subacute-care unit and non-UTI controls (total n = 18), and used urine culture to confirm the causative pathogens of the UTIs. In the ATR-FTIR analysis, the spectral variation between the UTI group and non-UTI, as well as that between various pathogens, was found in a range of 1800-900 cm-1, referring to the presence of specific constituents of the bacterial cell wall. The results indicated that the relative ratios between different area zones of vibration, as well as multivariate analysis, can be used as a clue to discriminate between UTI and non-UTI, as well as different causative pathogens of UTIs. This warrants a further large-scale study to validate the findings of this pilot research.


Assuntos
Infecção Hospitalar , Infecções Urinárias , Proteínas Mutadas de Ataxia Telangiectasia , Bactérias , Humanos , Projetos Piloto , Espectroscopia de Infravermelho com Transformada de Fourier , Infecções Urinárias/diagnóstico , Infecções Urinárias/microbiologia
5.
Phys Chem Chem Phys ; 24(3): 1424-1436, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34982080

RESUMO

NASA's New Horizons mission unveiled a diverse landscape of Pluto's surface with massive regions being neutral in color, while others like Cthulhu Macula range from golden-yellow to reddish comprising up to half of Pluto's carbon budget. Here, we demonstrate in laboratory experiments merged with electronic structure calculations that the photolysis of solid acetylene - the most abundant precipitate on Pluto's surface - by low energy ultraviolet photons efficiently synthesizes benzene and polycyclic aromatic hydrocarbons via excited state photochemistry thus providing critical molecular building blocks for the colored surface material. Since low energy photons deliver doses to Pluto's surface exceeding those from cosmic rays by six orders of magnitude, these processes may significantly contribute to the coloration of Pluto's surface and of hydrocarbon-covered surfaces of Solar System bodies such as Triton in general. This discovery critically enhances our perception of the distribution of aromatic molecules and carbon throughout our Solar System.

6.
Sci Adv ; 7(4)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523937

RESUMO

We present the first analysis of far-ultraviolet reflectance spectra of regions on Rhea's leading and trailing hemispheres collected by the Cassini Ultraviolet Imaging Spectrograph during targeted flybys. In particular, we aim to explain the unidentified broad absorption feature centred near 184 nm. We have used laboratory measurements of the UV spectroscopy of a set of candidate molecules and found a good fit to Rhea's spectra with both hydrazine monohydrate and several chlorine-containing molecules. Given the radiation-dominated chemistry on the surface of icy satellites embedded within their planets' magnetospheres, hydrazine monohydrate is argued to be the most plausible candidate for explaining the absorption feature at 184 nm. Hydrazine was also used as a propellant in Cassini's thrusters, but the thrusters were not used during icy satellite flybys and thus the signal is believed to not arise from spacecraft fuel. We discuss how hydrazine monohydrate may be chemically produced on icy surfaces.

7.
Phys Chem Chem Phys ; 22(46): 26982-26986, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33210100

RESUMO

Upon excitation with vacuum-ultraviolet (VUV) and extreme-ultraviolet (EUV) radiation, diamond with nitrogen vacancies (DNV) emits strong photoluminescence (PL) in the wavelength region of 550-800 nm. The spectral profiles of the DNV in the PL spectra appear to be strongly dependent on the temperature of the diamond. Moreover, all PL spectra intersect at one isosbestic point, 570 nm; this result is evidence that the NV0 and NV- defects in diamond interconvert with each other upon VUV and EUV radiation. We suggest the use of PL spectra of DNV excited with VUV or EUV light to indicate the temperature for applications such as in nano-photolithography technology for the manufacture of semiconductor devices.

8.
Opt Lett ; 45(19): 5413-5415, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001907

RESUMO

Upon excitation with extreme ultraviolet (EUV) radiation, optical windows CaF2 and sapphire emit strong photoluminescence (PL) in the ultraviolet region 200-400 nm. The spectral profiles of the windows observed in the PL spectra appear strongly dependent on their temperature. We suggest the use of PL spectra of CaF2 and sapphire excited with EUV light to indicate the temperature for EUV applications such as nano-photolithography technology in manufacturing semiconductor devices; potentially, the method is applicable to a wide range of radiation including the vacuum-ultraviolet (VUV) and EUV regions and in all fields.

9.
ACS Appl Mater Interfaces ; 12(3): 3847-3853, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31880911

RESUMO

Fluorescent nanodiamonds (FNDs) containing nitrogen-vacancy (NV) centers as built-in fluorophores exhibit a nearly constant emission profile over 550-750 nm upon excitation by vacuum-ultraviolet (VUV), extreme ultraviolet (EUV), and X-radiations from a synchrotron source over the energy (wavelength) range of 6.2-1450 eV (0.86-200 nm). The photoluminescence (PL) quantum yield of FNDs increases steadily with the increasing excitation energy, attaining a value as great as 1700% at 700 eV (1.77 nm). Notably, the yield curve is continuous, having no gap in the VUV to X-ray region. In addition, no significant PL intensity decreases were observed for hours. Applying the FND sensor to measure the absorption cross-sections of gaseous O2 over 110-200 nm and comparing the measurements with the sodium-salicylate scintillator, we obtained results in agreement with each other within 5%. The superb photostability and broad applicability of FNDs offer a promising solution for the long-standing problem of lacking a robust and reliable detector for VUV, EUV, and X-radiations.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117838, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31822454

RESUMO

We report mid-infrared spectra of silane dispersed in solid neon at relative concentrations 1:1000 and 1:5000, recorded with spectral resolution 0.15 cm-1. Apart from major lines associated with internal vibrational motions of 28SiH4, 29SiH4 and 30SiH4 in fundamental modes ν3 and ν4, several weak accompanying lines in each region become discernible at the resolution of our experimental measurements, and are tentatively associated with librational motions of silane molecules in the solid neon lattice. The wavenumbers associated with a few overtone and combination modes are also presented.

11.
Proc Natl Acad Sci U S A ; 116(49): 24420-24424, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31732669

RESUMO

Photochemistry of an N2 ice and thermal reaction of the irradiated sample were studied with vacuum-ultraviolet (VUV) light from a synchrotron. Concurrent detection of infrared absorption and visible emission spectra provide evidence for the generation of energetic products N (2D) and N (2P) atoms, N2 (A) molecule and linear-N3 (l-N3) radical after excitation of icy N2 at 121.6 nm. Irradiation at 190 nm is shown to be an effective way to eliminate the l-N3 radical. After the photolysis and photoelimination of the l-N3, we initiate synthesis of l-N3 via the thermal ramping of the sample in temperature range 3.5 to 20 K. In addition, the emission from the N (2D) atom was observed during the thermal ramping process. These behaviors indicate that a long-lived N (2Dlong) atom is generated in the VUV-photolyzed N2 ice. A comparison of the variations of the visible emission of N (2D) and the infrared absorption of l-N3 with time indicates that the long-lived N (2Dlong) dominated the thermal synthesis of l-N3 The results have enhanced suggestion and understanding of the conversion for nitrogen species in cold astrophysical environments with VUV irradiation.

12.
Opt Express ; 27(14): 19692-19701, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503725

RESUMO

Two-dimensional (2-D) hexagonal boron nitride (h-BN) has attracted considerable attention for deep ultraviolet optoelectronics and visible single photon sources, however, realization of an electrically-driven light emitter remains challenging due to its wide bandgap nature. Here, we report electrically-driven visible light emission with a red-shift under increasing electric field from a few layer h-BN by employing a five-period Al2O3/h-BN multiple heterostructure and a graphene top electrode. Investigation of electrical properties reveals that the Al2O3 layers act as potential barriers confining injected carriers within the h-BN wells, while suppressing the electrostatic breakdown by trap-assisted tunneling, to increase the probability of radiative recombination. The result highlights a promising potential of such multiple heterostructure as a practical and efficient platform for electrically-driven light emitters based on wide bandgap two-dimensional materials.

13.
ACS Omega ; 4(1): 2268-2274, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459469

RESUMO

Irradiation of ammonia dispersed in solid neon near 4 K with tunable far-ultraviolet light from a synchrotron yielded amidogen, NH2, and imidogen, NH, radicals as products. The electronic absorption spectra of amidogen radicals in isotopic variants NH2, NHD, and ND2 were recorded in the visible and near-ultraviolet regions after photolysis of NH3 and ND3. The infrared absorption lines of NH2 associated with vibration-rotational levels of vibrational modes ν1 at 3234.3 (00,0-10,1), 3244.9 (00,0-11,1), and 3249.3 cm-1 (00,0-11,0), and ν2 at 1498.7 (10,1-11,1), 1509.5 (11,0-10,1), 1516.5 (00,0-10,1), 1528.6 (00,0-11,1), and 1533.7 cm-1 (00,0-11,0) were unambiguously identified according to the results of experiments with deuterium isotopes. The 00,0-00,0 lines of ν1 and ν2 for NH2 were derived to be at 3213.5 and 1494.6 cm-1 in solid neon.

14.
Sci Rep ; 9(1): 10590, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332250

RESUMO

Remarkable improvements in both structural and optical properties of wafer-scale hexagonal boron nitride (h-BN) films grown by metal-organic chemical vapor deposition (MOCVD) enabled by high-temperature post-growth annealing is presented. The enhanced crystallinity and homogeneity of the MOCVD-grown h-BN films grown at 1050 °C is attributed to the solid-state atomic rearrangement during the thermal annealing at 1600 °C. In addition, the appearance of the photoluminescence by excitonic transitions as well as enlarged optical band gap were observed for the post-annealed h-BN films as direct consequences of the microstructural improvement. The post-growth annealing is a very promising strategy to overcome limited crystallinity of h-BN films grown by typical MOCVD systems while maintaining their advantage of multiple wafer scalability for practical applications towards two-dimensional electronics and optoelectronics.

15.
Phys Chem Chem Phys ; 20(32): 21034-21042, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30073227

RESUMO

The formation of the intriguing ions C4H6O+, C6H6Cl+, and C6H6O+, by dissociative ionization of heterotrimers of butadiene/sulfur dioxide, benzene/hydrogen chloride and benzene/oxygen by 14-27 eV photons, illustrates the possibility that VUV irradiation of clusters comprised of three or more molecules could provide a route to make ions containing bonds not previously accessible. Kinetic energy release distributions were measured in an attempt to understand the formation of these ions and why clusters larger than dimers are needed. Standard theory was applied to find whether more complicated theoretical treatments are needed to understand the data. It was found that all of the above ions were most likely produced by essentially the same mechanism: excitation of one moiety, transfer of its excitation energy to the moiety that dissociates, followed by slow decay of the remaining excited ion into the unexcited moiety as the "solvent" plus the ion with the new bond. The very low reaction probabilities to produce these ions, combined with very low target densities in the presence of many orders of magnitude higher densities of other molecules, precluded the usual imaging techniques. However, we found that the retarding-potential method can give useful data. Also, at present laser photon energies higher than 15 eV provide significantly smaller average intensities than are needed.

17.
Phys Chem Chem Phys ; 20(19): 13113-13117, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29717733

RESUMO

Irradiation of O2 dispersed in solid Ne with ultraviolet light produced infrared absorption lines of O3 and emission lines from atomic O (1D2 → 3P1,2), molecular O2 (A' 3Δu → X 3Σg) and radical OH (A 2Σ+ → X 2ΠI) in the visible and near-ultraviolet regions. The threshold wavelength for the formation of O3 was determined to be 200 ± 4 nm, corresponding to energy 6.20 ± 0.12 eV, which is hence the threshold for dissociation of O2. The thresholds of emission from excited O (1D2), O2 (A' 3Δu) and OH (A 2Σ+) were all observed to be 200 ± 4 nm, the same as for the formation of O3 in this photochemical system. The results indicate that, once O3 was generated, it was readily photolyzed to produce the long-lived atom O (1D2). Further reactions of O (1D2) with O3 produced excited O2 (A' 3Δu); reaction with water yielded radical OH (A 2Σ+). These results enhance our understanding of the evolution of the transformation of oxygen and open a window for the understanding of complicated processes in the solid phase.

18.
Phys Chem Chem Phys ; 20(11): 7730-7738, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29498724

RESUMO

Irradiation at 173 or 143 nm of samples of 16O2 or 18O2 in solid Ne near 4 K produced many new spectral lines in absorption and emission from the mid-infrared to the near-ultraviolet regions. The major product was ozone, O3, that was identified with its mid-infrared and near-ultraviolet absorption lines. Oxygen atoms were formed on photolysis of O2 and stored in solid neon until the temperature of a sample was increased to 9 K, which enabled their migration and combination to form O3 and likely also O2. O2 in five excited states and O in two excited states detected through the emission spectra indicate that complicated processes occurred in solid Ne after far-ultraviolet excitation. For the transition 1D2 → 3P1,2 of O, the lifetime was determined to be 5.87 ± 0.10 s; the lifetime of the upper state of an unidentified transition associated with an emission feature at 701.7 nm was determined to be 2.34 ± 0.07 s.

19.
Angew Chem Int Ed Engl ; 56(46): 14469-14473, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28885773

RESUMO

The nitrogen-vacancy (NV) centers in diamond are among the most thoroughly investigated defects in solid-state matter; however, our understanding of their properties upon far-UV excitation of the host matrix is limited. This knowledge is crucial for the identification of NV as the carrier of extended red emission (ERE) bands detected in a wide range of astrophysical environments. Herein, we report a study on the photoluminescence spectra of NV-containing nanodiamonds excited with synchrotron radiation over the wavelength range of 125-350 nm. We observed, for the first time, an emission at 520-850 nm with a quantum yield greater than 20 %. Our results share multiple similarities with the ERE phenomena, suggesting that nanodiamonds are a common component of dust in space.

20.
ACS Omega ; 2(2): 529-535, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31457453

RESUMO

Irradiation of samples of diborane(6), B2H6 and B2D6, separately and together, dispersed in solid neon near 4 K with tunable far-ultraviolet light from a synchrotron yielded new infrared absorption lines that are assigned to several carriers. Besides H, B, BH, BH2, BH3, B2, B2H2, and B2H4, previously identified, a further species is assigned on the basis of quantum-chemical calculations of vibrational wavenumbers and intensities to be cyc-B3H3 (D 3h , singlet state) in several isotopic variants, which feature three bridging B-H-B bonds in a six-membered ring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...