Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(28): 31879-31888, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35793226

RESUMO

Synergistic effect of soft carbon and hard carbon has been proven to be useful for obtaining excellent anode materials for potassium ion battery, which is determined by the mixing degree of precursors. Inspired by the formation of proteins in biology, peptide bonds are used to connect the precursors of the two sort of carbon to prepare soft-hard hybrid carbons with stronger synergistic effects. The hard carbon domain with nanometer size is so highly distributed in the soft carbon that the synergistic effect between two sorts of carbon is significantly enhanced. After the optimization, the diffusion coefficient of as-prepared hybrid carbon (CSHC3-6-1200) is 10 times larger than that of corresponding carbon synthesized by physical method. Consequently, CSHC3-6-1200 can maintain a specific capacity of 71.6 mAh g-1 at a high current density of 1600 mA g-1. It is believed that this new preparation route may bring a new perspective to the development of soft and hard composite carbon material anodes with high power density and ultralong service life.

2.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566322

RESUMO

Although K+ is readily inserted into graphite, the volume expansion of graphite of up to 60% upon the formation of KC8, together with its slow diffusion kinetics, prevent graphite from being used as an anode for potassium-ion batteries (PIBs). Soft carbon with low crystallinity and an incompact carbon structure can overcome these shortcomings of graphite. Here, ultra-thin two-dimensional (2D) wrinkled soft carbon sheets (USCs) are demonstrated to have high specific capacity, excellent rate capability, and outstanding reversibility. The wrinkles themselves prevent the dense stacking of micron-sized sheets and provide sufficient space to accommodate the volume change of USCs during the insertion/extraction of K+. The ultra-thin property reduces strain during the formation of K-C compounds, and further maintains structural stability. The wrinkles and heteroatoms also introduce abundant edge defects that can provide more active sites and shorten the K+ migration distance, improving reaction kinetics. The optimized USC20-1 electrode exhibits a reversible capacity of 151 mAh g-1 even at 6400 mA g-1, and excellent cyclic stability up to 2500 cycles at 1000 mA g-1. Such comprehensive electrochemical performance will accelerate the adoption of PIBs in electrical energy applications.

3.
Adv Mater ; 33(37): e2100808, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337787

RESUMO

Numerous studies have reported that the enhancement of rate capability of carbonaceous anode by heteroatom doping is due to the increased diffusion-controlled capacity induced by expanding interlayer spacing. However, percentage of diffusion-controlled capacity is less than 30% as scan rate is larger than 1 mV s-1 , suggesting there is inaccuracy in recognizing principle of improving rate capability of carbonaceous anode. In this paper, it is found that the heteroatom doping has little impact on interlayer spacing of carbon in bulk phase, meaning that diffusion-controlled capacity is hard to be enhanced by doping. After synergizing with tensile stress, however, the interlayer spacing in subsurface region is obviously expanded to 0.40 nm, which will increase the thickness of accessible subsurface region at high current density. So SRNDC-700 electrodes display a high specific capacity of 160.6 and 69.5 mAh g-1 at 20 and 50 A g-1 , respectively. Additionally, the high reversibility of carbon structure insures ultralong cycling stability and hence attenuation of SRNDC-700 is only 0.0025% per cycle even at 10 A g-1 for 6000 cycles. This report sheds new insight into mechanism of improving electrochemical performance of carbonaceous anode by doping and provides a novel design concept for doping carbon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...