Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37297512

RESUMO

In this study, naked oat bran albumin hydrolysates (NOBAH) were subjected to gel chromatography with Sephadex G-15, reverse phase-high liquid performance separation, and UPLC-ESI-MS/MS identification. Six safe peptides including Gly-Thr-Thr-Gly-Gly-Met-Gly-Thr (GTTGGMGT), Gln-Tyr-Val-Pro-Phe (QYVPF), Gly-Ala-Ala-Ala-Ala-Leu-Val (GAAAALV), Gly-Tyr-His-Gly-His (GYHGH), Gly-Leu-Arg-Ala-Ala-Ala-Ala-Ala-Ala-Glu-Gly-Gly (GLRAAAAAAEGG), and Pro-Ser-Ser-Pro-Pro-Ser (PSSPPS) were identified. Next, in silico screening demonstrated that QYVPF and GYHGH had both angiotensin-I-converting enzyme (ACE) inhibition activity (IC50: 243.36 and 321.94 µmol/L, respectively) and Zinc-chelating ability (14.85 and 0.32 mg/g, respectively). The inhibition kinetics demonstrated that QYVPF and GYHGH were both uncompetitive inhibitors of ACE. Molecular docking showed that QYVPF and GYHGH could bind, respectively, three and five active residues of ACE with short hydrogen bonds (but not belonging to any central pocket). QYVPF and GYHGH could bind, respectively, twenty-two and eleven residues through hydrophobic interactions. Moreover, GYHGH was able to affect zinc tetrahedral coordination in ACE by interacting with His383. The inhibition activities of QYVPF and GYHGH toward ACE were relatively resistant to gastrointestinal digestion. GYHGH improved zinc solubility in the intestines (p > 0.05) because its amino and carboxyl groups were chelating sites for zinc ions. These results suggest the potential applications of naked oat peptides for potential antihypertension or zinc fortification.

2.
Food Chem ; 411: 135503, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682165

RESUMO

The effects of cellulase hydrolysis separately combined with hydroxypropylation, carboxymethylation and phosphate crosslinking on the physicochemical properties and antioxidant activity of millet bran dietary fibre (MBDF) were investigated. Compared to cellulase hydrolysis alone, these dual modifications more effectively improved the soluble fibre content, water-swelling ability, viscosity, emulsifying capacity and cation-exchange capacity of MBDF but reduced the emulsion stability, brightness and polyphenol content of MBDF (P < 0.05). MBDF modified by cellulase hydrolysis combined with hydroxypropylation showed the highest emulsifying capacity (60.03 m2/g) and oil-adsorption capacity (3.32 g/g) but the lowest nitrite ion-adsorbing ability (NIAA). MBDF modified by cellulase hydrolysis with carboxymethylation showed the highest surface hydrophobicity, cation-exchange capacity (0.352 mmol/g) and NIAA (152.89 µg/g). MBDF modified by cellulase hydrolysis combined with phosphate crosslinking exhibited excellent copper ion-adsorbing ability (19.97 mg/g) and viscosity (19.33 cp). Moreover, these dual modifications all enhanced the Fe2+ chelating ability and reducing power of MBDF (P < 0.05).


Assuntos
Antioxidantes , Celulases , Antioxidantes/química , Milhetes , Fibras na Dieta , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...