Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 619-629, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38948275

RESUMO

Objective: Based on the secreted frizzled-related protein 2 (SFRP2)-Wnt/ß-catenin signaling pathway, this study explored the effect and mechanism of Cuiru Keli (CRKL) in the treatment of postpartum hypogalactia. Methods: A rat model of postpartum hypogalactia was established by gavaging 2 mL of 1.6 mg/mL bromocriptine mesylate to female rats on the third day after delivery. Female rats with a delivery time difference of less than 48 hours were selected and randomly assigned to 7 groups, including a normal group (without any modeling or medication), a model group, a CRKL low-dose group of model group model rats receiving CRKL at the dose of 3 g/kg, a CRKL medium-dose group of model rats receiving CRKL at the dose of 6 g/kg, a CRKL high-dose group of model rats receiving CRKL at the dose of 9 g/kg, a positive drug group of model rats receiving domperidone at the dose of 3 mg/kg, and a negative control (NC) group of model rats receiving normal saline. Each group contained 6 rats. Except for the normal and model groups, the remaining 5 groups were continuously administered with the respective intervention drugs at the specified doses by gavage once a day for 10 days. Changes in the total litter mass of the offspring in the 7 groups within 10 days were measured, and HE staining was performed to identify pathological changes in the mammary tissue (MT). Six groups of rats (excluding the positive control group) were used to observe the pathological changes of eosinophils in pituitary tissue. ELISA was performed to determine the content of prolactin (PRL) in serum, immunohistochemical staining was used to determine the expression of prolactin receptor (PRLR) in MT, and RT-qPCR was used to determine the mRNA expression of genes related to lactation in MT. Network pharmacology and molecular docking were used to study the therapeutic effect and mechanism of CRKL on postpartum hypogalactia, particularly whether it acted through the SFRP2-Wnt/ß-catenin signaling pathway. The mechanism of CRKL treatment was further validated by detecting mRNA (RT-qPCR) and protein expression (Western blot) of related pathway genes. Cell experiments were conducted using primary culture rat mammary epithelial cells (RMEC) from rat MT. RMEC were divided into four groups, including a normal group (primary culture RMEC, untreated), SFRP2 overexpression group (primary cultured RMEC treated with SFRP2 overexpression vector), SFRP2 overexpression+CRKL group (receiving treatment for SFRP2 overexpression group plus 10% drug-containing serum), and negative control group (primary culture RMEC treated with empty vector). The effect of CRKL on the expression of lactation-related genes FASN, CSN2, and GLUT1 mRNA after SFRP2 overexpression was detected by RT-qPCR. Results: In this study, CRKL was administered at a dose of 3 g/kg in the CRKL low-dose group, 6 g/kg in the medium-dose group, and 9 g/kg in the high-dose group (P<0.05 or P<0.01). Compared with the model group, CRKL at all doses significantly increased the total litter weight gain of the offsprings within 10 days (P<0.05 or P<0.01), and effectively increased lactation (P<0.01), the area of mammary lobules, and the size and filling of acinar cavities. CRKL at all doses also increased the number of eosinophils that secreted PRL in the pituitary gland of the postpartum hypogalactia rat model, and increased the content of PRL in the serum (P<0.05 or P<0.01). CRKL promoted the secretion and expression of PRL in postpartum hypogalactic model rats. In addition, it significantly promoted the expression of genes related to milk fat, milk protein, and lactose synthesis in MT (P<0.05 or P<0.01). Network pharmacology predicted that the Wnt signaling pathway might be a key pathway for CRKL in treating postpartum hypogalactia. The molecular docking results showed that related chemical components in CRKL had good binding ability with CCND1 and SFRP2. Compared with the model group, CRKL at all doses inhibited the expression of SFRP2 gene in vivo (P<0.01) and activated the mRNA and protein expression of CCND1 and c-Myc in the Wnt/ß-catenin signaling pathway in MT (P<0.05 or P<0.01). Cell experiments showed that, compared to the normal group, SFRP2 overexpression reduced the mRNA expression of milk synthesis-related genes FASN, CSN2, and GLUT1 in RMEC (P<0.01). The CCK8 results indicated that 10% of the drug-containing serum was the effective concentration administered to cells (P<0.01). After administering drug-containing serum, the expression of the lactation-related genes FASN, CSN2, and GLUT1 were up-regulated (compared with the SFRP2 overexpression group, P<0.01). Conclusion: CRKL alleviates postpartum hypogalactia through the SFRP2-Wnt/ß-catenin signaling pathway. SFRP2 might be a potential new target for the diagnosis and treatment of postpartum hypogalactia. This reveals a new mechanism of CRKL in treating postpartum hypogalactia and promotes its clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Período Pós-Parto , Via de Sinalização Wnt , Animais , Feminino , Ratos , Via de Sinalização Wnt/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Período Pós-Parto/metabolismo , Ratos Sprague-Dawley , Gravidez , beta Catenina/metabolismo , beta Catenina/genética
3.
Biochem Pharmacol ; 218: 115930, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37979704

RESUMO

Osteoarthritis (OA) is a degenerative disease that leads to joint pain and stiffness and is one of the leading causes of disability and pain worldwide. Autophagy is a highly conserved self-degradation process, and its abnormal function is closely related to human diseases, including OA. Abnormal autophagy regulates cell aging, matrix metalloproteinase metabolism, and reactive oxygen metabolism, which are key in the occurrence and development of OA. There is evidence that drugs directly or indirectly targeting autophagy significantly hinder the progress of OA. In addition, the occurrence and development of autophagy in OA are regulated by many factors, including epigenetic modification, exosomes, crucial autophagy molecules, and signaling pathway regulation. Autophagy, as a new therapeutic target for OA, has widely influenced the pathological mechanism of OA. However, determining how autophagy affects OA pathology and its use in the treatment and diagnosis of targets still need further research.


Assuntos
Exossomos , Osteoartrite , Humanos , Exossomos/genética , Exossomos/metabolismo , Condrócitos , Epigênese Genética , Osteoartrite/metabolismo , Autofagia
4.
Arthritis Res Ther ; 25(1): 189, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784134

RESUMO

BACKGROUND: N6-methyladenosine (m6A) methylation modification is involved in the regulation of various biological processes, including inflammation, antitumor, and antiviral immunity. However, the role of m6A modification in the pathogenesis of autoimmune diseases has been rarely reported. METHODS: Based on a description of m6A modification and the corresponding research methods, this review systematically summarizes current insights into the mechanism of m6A methylation modification in autoimmune diseases, especially its contribution to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). RESULTS: By regulating different biological processes, m6A methylation is involved in the pathogenesis of autoimmune diseases and provides a promising biomarker for the diagnosis and treatment of such diseases. Notably, m6A methylation modification is involved in regulating a variety of immune cells and mitochondrial energy metabolism. In addition, m6A methylation modification plays a role in the pathological processes of RA, and m6A methylation-related genes can be used as potential targets in RA therapy. CONCLUSIONS: M6A methylation modification plays an important role in autoimmune pathological processes such as RA and SLE and represents a promising new target for clinical diagnosis and treatment, providing new ideas for the treatment of autoimmune diseases by targeting m6A modification-related pathways.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Metilação , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/genética , Doenças Autoimunes/terapia , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/genética , Artrite Reumatoide/terapia , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/terapia , Epigênese Genética/genética
5.
Mediators Inflamm ; 2023: 6680731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469759

RESUMO

Due to the considerable heterogeneity of head and neck squamous cell carcinoma (HNSCC), individuals with comparable TNM stages who receive the same treatment strategy have varying prognostic outcomes. In HNSCC, immunotherapy is developing quickly and has shown effective. We want to develop an immune-related gene (IRG) prognostic model to forecast the prognosis and response to immunotherapy of patients. In order to analyze differential expression in normal and malignant tissues, we first identified IRGs that were differently expressed. Weighted gene coexpression network analysis (WGCNA) was used to identify modules that were highly related, and univariate and multivariate Cox regression analyses were also used to create a predictive model for IRGs that included nine IRGs. WGCNA identified the four most noteworthy related modules. Patients in the model's low-risk category had a better chance of survival. The IRGs prognostic model was also proved to be an independent prognostic predictor, and the model was also substantially linked with a number of clinical characteristics. The low-risk group was associated with immune-related pathways, a low incidence of gene mutation, a high level of M1 macrophage infiltration, regulatory T cells, CD8 T cells, and B cells, active immunity, and larger benefits from immune checkpoint inhibitors (ICIs) therapy. The high-risk group, on the other hand, had suppressive immunity, high levels of NK and CD4 T-cell infiltration, high gene mutation rates, and decreased benefits from ICI therapy. As a result of our research, a predictive model for IRGs that can reliably predict a patient's prognosis and their response to both conventional and immunotherapy has been created.


Assuntos
Neoplasias de Cabeça e Pescoço , Imunoterapia , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Prognóstico , Matriz Extracelular , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia
6.
Cell Biosci ; 13(1): 126, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420298

RESUMO

BACKGROUND: Hepatic fibrosis (HF) is a pathological process caused by excessive accumulation of extracellular matrix caused by a series of causes, leading to the formation of fiber scar. RNA methylation is a newly discovered epigenetic modification that exists widely in eukaryotes and prokaryotes and plays a crucial role in the pathogenesis of many diseases. RESULTS: The occurrence and development of HF are regulated by many factors, including excessive deposition of extracellular matrix, activation of hepatic stellate cells, inflammation, and oxidative stress. RNA methylations of different species have become a crucial regulatory mode of transcript expression, And participate in the pathogenesis of tumors, nervous system diseases, autoimmune diseases, and other diseases. In addition, there are five common types of RNA methylation, but only m6A plays a crucial regulatory role in HF. The pathophysiological regulation of m6A on HF is achieved by the combination of the methylated transferase, demethylated enzyme, and methylated reading protein. CONCLUSIONS: RNA methylated methyltransferase, demethylase, and reading protein extensively affect the pathological mechanism of HF, which may be a new therapeutic and diagnostic target, representing a new class of therapeutic strategies.

7.
Cell Cycle ; 22(14-16): 1675-1693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409592

RESUMO

Inadequate milk secretion and a lack of nutrients in humans and mammals are serious problems. It is of great significance to clarify the mechanisms of milk synthesis and treatment methods. Epigenetic modification, represented by RNA methylation, is an important way of gene expression regulation that profoundly affects human gene expression and participates in various physiological and pathological mechanisms. Epigenetic disorders also have an important impact on the production and secretion of milk. This review systematically summarized the research results of epigenetics in the process of lactation in PubMed, Web of Science, NSTL, and other databases and reviewed the effects of epigenetics on human and mammalian lactation, including miRNAs, circRNAs, lncRNAs, DNA methylations, and RNA methylations. The abnormal expression of miRNAs was closely related to the synthesis and secretion of milk fat, milk protein, and other nutrients in the milk of cattle, sheep, and other mammals. MiRNAs are also involved in the synthesis of human milk and the secretion of nutrients. CircRNAs and lncRNAs mainly target miRNAs and regulate the synthesis of nutrients in milk by ceRNA mechanisms. The abnormal expression of DNA and RNA methylation also has an important impact on milk synthesis. Epigenetic modification has the potential to regulate the milk synthesis of breast epithelial cells. Analyzing the mechanisms of human and mammalian milk secretion deficiency and nutrient deficiency from the perspective of epigenetics will provide a new perspective for the treatment of postpartum milk deficiency in pregnant women and mammalian milk secretion deficiency.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , Bovinos , Gravidez , Animais , Ovinos/genética , Metilação de DNA/genética , Epigênese Genética , RNA Mensageiro/genética , RNA Circular/metabolismo , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mamíferos/metabolismo
8.
Int Immunopharmacol ; 122: 110549, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421778

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease caused by a variety of unknown factors. It mainly occurs in the small joints of hands and feet, leading to cartilage destruction and bone erosion. Various pathologic mechanisms such as exosomes and RNA methylations are involved in the pathogenesis of RA. METHODS: This work searches PubMed, Web of Science (SCIE) and Science Direct Online (SDOL) databases, it role of abnormally expressed circulating RNAs (circRNAs) in the pathogenesis of RA was summarized. And the relationship between circRNAs and exosomes and methylations. RESULTS: Both the abnormal expression of circRNAs and the sponge effect of circRNAs on microRNAs (miRNAs) affect the pathogenesis of RA by regulating target genes. CircRNAs affect the proliferation, migration and inflammatory reaction of RA-fibroblast-like synovial cells (FLSs), circRNAs in peripheral blood mononuclear cells (PBMCs) and macrophages also participate in the pathological mechanism of RA (Fig. 1). CircRNAs in exosomes are closely related to the pathogenesis of RA. In addition, exosomal circRNAs and the relationship between circRNAs and RNA methylations are closely related to the pathogenesis of RA. CONCLUSION: CircRNAs play an important role in the pathogenesis of RA and have the potential to be a new target for the diagnosis and treatment of RA. However, the development of mature circRNAs for clinical application is not a small challenge.


Assuntos
Artrite Reumatoide , Ácidos Nucleicos Livres , Exossomos , MicroRNAs , Sinoviócitos , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Metilação , Ácidos Nucleicos Livres/metabolismo , Exossomos/genética , Exossomos/metabolismo , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Artrite Reumatoide/metabolismo , Sinoviócitos/metabolismo
9.
Biochem Pharmacol ; 212: 115580, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148980

RESUMO

Osteoarthritis (OA) is an age-related joint disease with chronic inflammation, progressive articular cartilage destruction and subchondral bone sclerosis. CircRNAs (circRNAs) are a class of non-coding RNA with a circular structure that participate in a series of important pathophysiological processes of OA, especially its ceRNA mechanisms, and play an important role in OA. CircRNAs may be potential biomarkers for the diagnosis and prognosis of OA. Additionally, differentially expressed circRNAs were found in patients with OA, indicating that circRNAs are involved in the pathogenesis of OA. Experiments have shown that the intra-articular injection of modified circRNAs can effectively relieve OA. Exosomal circRNAs and methylated circRNAs also provide new ideas for the treatment of OA. Clarifying the important roles of circRNAs in OA will deepen people's understanding of the pathogenesis of OA. CircRNAs may be developed as new biomarkers or drug targets for the diagnosis of OA and provide new methods for the treatment of OA.


Assuntos
Exossomos , MicroRNAs , Osteoartrite , Humanos , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Metilação , Exossomos/genética , Exossomos/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Biomarcadores
10.
J Ethnopharmacol ; 311: 116445, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37015279

RESUMO

ETHNOPHARMACOLOGIC SIGNIFICANCE: Wilson's disease (WD) hepatic fibrosis is the result of chronic liver injury induced by Cu2+ deposition in the liver. Gandouling (GDL) is a hospital preparation of the First Affiliated Hospital of Anhui University of Chinese Medicine. Previous studies have found that GDL can play an anti-inflammatory, anti-oxidation, and promote Cu2+ excretion, which has a clear anti-WD effect. AIM OF THE STUDY: We found that Wnt-1 was significantly up-regulated in the liver tissue of toxic-milk (TX) mouse in the WD gene mutant model, and the monomer components of GDL could combine well with Wnt-1. Therefore, in this work, we used RT-qPCR, Western blot, immunofluorescence, network pharmacology, molecular docking, and related methods to study the effects of GDL on hepatic stellate cell (HSC) activation and Wnt-1/ß-catenin pathway in TX mice to clarify the effect of GDL on WD hepatic fibrosis. RESULTS: GDL could alleviate hepatic fibrosis, improve liver function, and inhibit the activation of HSC in TX mice. Network pharmacology predicted that the Wnt-1/ß-catenin was the target of GDL, and molecular dynamics further revealed that GDL has a good binding ability with Wnt-1 and inhibits the Wnt/ß-catenin signaling pathway through Wnt-1. Furthermore, we found that GDL blocked the Wnt-1/ß-catenin signaling pathway in the liver of TX mice in vivo. In vitro, serum containing GDL blocked the Cu2+ ion-induced Wnt-1/ß-catenin signaling pathway in LX-2 cells. Therefore, GDL blocked the Wnt-1/ß-catenin signaling pathway, inhibited HSC activation, and improved WD hepatic fibrosis by binding to Wnt-1. CONCLUSION: GDL improves hepatic fibrosis in WD model mice by blocking the Wnt-1/ß-catenin signaling pathway, and Wnt-1 may be a new target for the diagnosis and treatment of WD. This reveals a new mechanism of GDL against WD, and promotes the clinical promotion of GDL.


Assuntos
Degeneração Hepatolenticular , Camundongos , Animais , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/patologia , Via de Sinalização Wnt , beta Catenina/metabolismo , Simulação de Acoplamento Molecular , Proliferação de Células , Cirrose Hepática/metabolismo , Células Estreladas do Fígado
11.
J Pharm Pharmacol ; 75(3): 370-384, 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36583516

RESUMO

BACKGROUND: Autoimmune diseases are diseases caused by tissue damage caused by the body's immune response to autoantibodies. Circular RNAs (CircRNAs) are a kind of special endogenous non-coding RNA that play a biological role by regulating gene transcription. METHODS: In this work, we searched the PubMed, Web of Science (SCIE), National Science and Technology Library (NSTL), and ScienceDirect Online (SDOL) databases to summarize the impact of circRNAs on autoimmune diseases, especially the results of circRNAs in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). RESULTS: The study on the function of circRNAs and autoimmune diseases further deepened our understanding of the development and pathogenesis of autoimmune diseases. CircRNAs may act as miRNA sponges to regulate biological processes and affect the occurrence and development of autoimmune diseases. CircRNAs are closely related to the pathogenesis of RA and SLE and may become potential biomarkers for the diagnosis and treatment of RA and SLE. CONCLUSION: CircRNAs play an important role in the pathogenesis of RA, SLE and other autoimmune diseases, and are expected to provide new biomarkers for the diagnosis and treatment of autoimmune diseases. However, the function and mechanism of circRNAs in autoimmune diseases need more comprehensive research.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , RNA Circular , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Biomarcadores
12.
Cell Cycle ; 22(5): 527-541, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36229933

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease, which leads to atherosclerotic rupture, lumen stenosis and thrombosis, and often endangers life. Circular RNAs (circRNAs) are a special class of non-coding RNA molecules, whose abnormal expression has been proved to be closely related to human diseases, including AS. Both the abnormal regulation of circRNAs and the sponging effect on miRNAs would lead to changes in gene expression in the form of epigenetic modification, ultimately leading to the formation of AS. CircRNAs can be used as peripheral blood markers of AS, and play an important regulatory role in the proliferation, migration, inflammation and apoptosis of vascular smooth muscle cells, endothelial cells and macrophage, which are key cells for the development of AS. The in-depth understanding of circRNAs in AS not only provides a new method for the diagnosis of AS, but also provides a new idea for the treatment of AS.


Assuntos
Aterosclerose , MicroRNAs , Humanos , MicroRNAs/metabolismo , RNA Circular/genética , Células Endoteliais/metabolismo , Epigênese Genética , Aterosclerose/genética
13.
J Ethnopharmacol ; 302(Pt A): 115886, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36336221

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqin Qingre Qubi Capsule (HQC) is a Chinese herbal compound for the treatment of rheumatoid arthritis (RA), which is made from dry roots of Scutellaria baicalensis Georgi, dry mature seeds of Gardenia jasminoides J.Ellis, dry and mature seeds of Coix lacryma-jobi var. stenocarpa Oliv., dry mature seeds of Amygdalus persica L. and roots and rhizomes of Clematis chinensis Osbeck in the proportion of 10:9:30:5:10. HQC has a significant effect in clinical treatment of RA, which can inhibit RA inflammation, improve oxidative stress state, and effectively relieve symptoms of RA patients. AIM OF THE STUDY: The anti-arthritis effect of HQC and its mechanism, especially whether it improves RA through FZD8-Wnt/ß-catenin signal axis, were studied using adjuvant arthritis (AA) rats and FLS from RA patients. MATERIALS AND METHODS: Real time qPCR (RT-qPCR), Western blot (WB), confocal microscopy and other molecular biological methods were used to study the anti-RA effect of HQC and its mechanism. RESULTS: The expression of FZD8 was significantly up-regulated in synovium and FLS of AA rats and RA FLS. FZD8 significantly activated the Wnt/ß-catenin signaling pathway, promoted abnormal proliferation of FLS, increased the levels of inflammatory factors IL-1ß, IL-6 and IL-8, and significantly increased the expression of matrix metalloproteinase 3 (MMP3) and fibronectin. HQC has significant therapeutic effect on AA rats. Molecular docking and molecular dynamics showed that HQC had a good binding ability with FZD8. We also confirmed that HQC inhibited Wnt/ß-catenin signaling pathway by binding FZD8, and reduced the levels of the above inflammatory factors and pathological genes of RA. CONCLUSIONS: The expression of FZD8 is significantly increased in AA rats and FLS from RA patients. Clarify that HQC improves RA through the FZD8-Wnt/ß-catenin signal axis, provide a clear therapeutic mechanism for HQC to improve RA, and also provide a basis for clinical promotion of HQC.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Via de Sinalização Wnt , Scutellaria baicalensis , beta Catenina/metabolismo , Simulação de Acoplamento Molecular , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Experimental/metabolismo , Membrana Sinovial/metabolismo , Fibroblastos/metabolismo
14.
Int Immunopharmacol ; 113(Pt A): 109376, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279670

RESUMO

BACKGROUNDS: Traditional Chinese medicine roots and rhizomes of Clematis chinensis Osbeck (CCO) has the effect of improving rheumatoid arthritis (RA), Clematichinenoside AR (CAR) is an effective monomer of CCO and a promising natural product for the treatment of RA. METHODS: In this work, we aim to systematically evaluate whether CAR can improve RA pathology, inhibit the fibroblast-like synoviocytes (FLS) proliferation and inflammatory response, and further investigate the mechanism of CAR inhibiting RA through molecular docking, molecular dynamics and molecular biology methods. RESULTS: Combined with the research results of CIA mice and FLS from RA patients, we found that CAR significantly improved the severity of CIA mice, and inhibited the proliferation and inflammatory response of FLS. Combined with bioinformatics prediction, we confirmed that circPTN promoted frizzled-4 (FZD4) expression through sponging miR-145-5p, then activating the Wnt/ß-catenin pathway. The circPTN/miR-145-5p/FZD4 signal axis was involved in the pathogenesis of RA. Furthermore, CAR blocked the circPTN/miR-145-5p/FZD4 signal axis by combining with FZD4 and improved RA pathology. CONCLUSIONS: The circPTN/miR-145-5p/FZD4 signal axis plays an important role in promoting the pathogenesis of RA, and CAR from CCO may inhibit RA pathology by combining the FZD4 and further blocking this signal axis.


Assuntos
Artrite Reumatoide , Saponinas , Sinoviócitos , Triterpenos , Animais , Camundongos , Artrite Reumatoide/metabolismo , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Simulação de Acoplamento Molecular , Sinoviócitos/metabolismo , RNA Circular/genética , Saponinas/farmacologia , Triterpenos/farmacologia
15.
Bioorg Med Chem Lett ; 67: 128760, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476958

RESUMO

A series of novel cinnamic acid triptolide ester derivatives were synthesized, and their growth inhibitory properties against human hepatoma HepG2 cells were assessed as the measure of cytotoxicity with triptolide as the positive control. One of the phenolic hydroxyl phosphorylated products, CL20 was found to possess the best cytotoxicity and surpassed the parent natural triptolide, suggesting that compound CL20 is a promising antitumor lead compound and deserves further research of pharmacological activity. In addition, the structure-activity relationship for these compounds was also investigated.


Assuntos
Antineoplásicos , Desenho de Fármacos , Antineoplásicos/farmacologia , Cinamatos , Diterpenos , Compostos de Epóxi , Ésteres/farmacologia , Humanos , Estrutura Molecular , Fenantrenos , Relação Estrutura-Atividade
16.
Crit Rev Clin Lab Sci ; 59(3): 203-218, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34775884

RESUMO

Autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and systemic vasculitis are caused by the body's immune response to autoantigens. The pathogenesis of autoimmune diseases is complex. RNA methylation is known to play a key role in disease progression as it regulates almost all aspects of RNA processing, including RNA nuclear export, translation, splicing, and noncoding RNA processing. This review summarizes the mechanisms, molecular structures of RNA methylations and their roles in biological functions. Similar to the roles of RNA methylation in cancers, RNA methylation in RA and SLE involves "writers" that deposit methyl groups to form N6-methyladenosine (m6A) and 5-methylcytosine (m5C), "erasers" that remove these modifications, and "readers" that further affect mRNA splicing, export, translation, and degradation. Recent advances in detection methods have identified N1-methyladenosine (m1A), N6,2-O-dimethyladenosine (m6Am), and 7-methylguanosine (m7G) RNA modifications, and their roles in RA and SLE need to be further studied. The relationship between RNA methylation and other autoimmune diseases has not been reported, and the roles and mechanisms of RNA modifications in these diseases need to be explored in the future.


Assuntos
Lúpus Eritematoso Sistêmico , Processamento Pós-Transcricional do RNA , Humanos , Lúpus Eritematoso Sistêmico/genética , Metilação , Estrutura Molecular , RNA/genética
17.
Front Pharmacol ; 12: 750233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512369

RESUMO

The pathogenesis of rheumatoid arthritis (RA) is still not fully clarified, and the development of therapeutic drugs for RA is particularly urgent. Our group studies a possibility that circ_ 0015756/miR-942-5p may participate in the pathogenesis of RA through disordered Cullin 4B (CUL4B) and the traditional Chinese medicine compound Huangqin Qingre Chubi Capsule (HQC) may inhibit the pathogenesis of RA through the CUL4B/Wnt pathway. Data showed that the expression of circ_0015756 increased not only in fibroblast-like synoviocytes (FLS) of RA, but also in synovium and FLS of CIA mice, and the expression of miR-942-5p decreased. Abnormal circ_0015756 up-regulated the CUL4B expression and activated the canonical Wnt signaling pathway by inhibiting the expression of miR-942-5p. Circ_0015756 participated in the pathogenesis of RA and promoted the abnormal proliferation of FLS. Further, circ_0015756 activated the secretion of IL-1 and IL-8 and promoted the production of RA pathological gene MMP3 and fibronectin. Further analysis showed that HQC inhibited the pathogenesis of RA through the CUL4B/Wnt pathway, and the specific target was CUL4B. HQC interfered with the effects of circ_0015756 on the pathogenesis of RA by inhibiting the CUL4B, showing a good therapeutic effect on RA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...