Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (199)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37843258

RESUMO

Forest wood borers (FWB) cause severe tree damage and economic losses worldwide. The release of entomopathogenic fungi (EPF) during the FWB emergence period is considered an acceptable alternative to chemical control. However, EPF resources have been significantly less explored for FWBs, in contrast to agricultural insect pests. This paper presents a protocol for exploring EPF resources from FWBs using wild Monochamus alternatus populations as an example. In this protocol, the assignment of traps baited with M. alternatus attractants to different populations guaranteed the collection of adequate samples with natural infection symptoms, during the emergence periods of the beetle. Following finely dissecting integuments and placing them onto a selective medium, fungal species were isolated from each part of beetle bodies and identified based on both molecular and morphological traits. Several fungal species were certified as parasitic EPFs via re-infection of healthy M. alternatus with spore suspensions. Their behavioral phenotypes on M. alternatus were observed using scanning electron microscopy and further compared with those on the Coleopteran model insect Tribolium castaneum. For EPFs that present consistent parasitism phenotypes on both beetle species, evaluation of their activities on T. castaneum provided valuable information on lethality for future study on M. alternatus. This protocol helped the discovery of EPF newly reported on M. alternatus populations in China, which could be applied as an efficient approach to explore more EPF resources from other FWBs.


Assuntos
Besouros , Madeira , Animais , Virulência , Besouros/genética , Insetos , Florestas , Fungos
2.
Sci Adv ; 8(51): eadd5051, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563163

RESUMO

The red turpentine beetle (RTB) is one of the most destructive invasive pests in China and solely consumes pine phloem containing high amounts of d-pinitol. Previous studies reported that d-pinitol exhibits deterrent effects on insects. However, it remains unknown how insects overcome d-pinitol during their host plant adaptation. We found that d-pinitol had an antagonistic effect on RTB, which mainly relied on gallery microbes to degrade d-pinitol to enhance host adaptation with mutualistic Leptographium procerum and two symbiotic bacteria, Erwinia and Serratia, responsible for this degradation. Genomic, transcriptomic, and functional investigations revealed that all three microbes can metabolize d-pinitol via different branches of the inositol pathway. Our results collectively highlight the contributions of symbiotic microbes in RTB's adaptation to living on pine, thereby facilitating outbreaks of RTB in China. These findings further enrich our knowledge of symbiotic invasions and contribute to the further understanding of plant-insect interactions.

3.
Front Plant Sci ; 13: 1061520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36643293

RESUMO

Entomopathogen-based biocontrol is crucial for blocking the transmission of vector-borne diseases; however, few cross-latitudinal investigations of entomopathogens have been reported for vectors transmitting woody plant diseases in forest ecosystems. The pine sawyer beetle Monochamus alternatus is an important wood borer and a major vector transmitting pine wilt disease, facilitating invasion of the pinewood nematode Bursaphelenchus xylophilus (PWN) in China. Due to the limited geographical breadth of sampling regions, species diversity of fungal associates (especially entomopathogenic fungi) on M. alternatus adults and their potential ecological functions have been markedly underestimated. In this study, through traditional fungal isolation with morphological and molecular identification, 640 fungal strains (affiliated with 15 genera and 39 species) were isolated from 81 beetle cadavers covered by mycelia or those symptomatically alive across five regional populations of this pest in southern China. Multivariate analyses revealed significant differences in the fungal community composition among geographical populations of M. alternatus, presenting regionalized characteristics, whereas no significant differences were found in fungal composition between beetle genders or among body positions. Four region-representative fungi, namely, Lecanicillium attenuatum (Zhejiang), Aspergillus austwickii (Sichuan), Scopulariopsis alboflavescens (Fujian), and A. ruber (Guangxi), as well as the three fungal species Beauveria bassiana, Penicillium citrinum, and Trichoderma dorotheae, showed significantly stronger entomopathogenic activities than other fungi. Additionally, insect-parasitic entomopathogenic fungi (A. austwickii, B. bassiana, L. attenuatum, and S. alboflavescens) exhibited less to no obvious phytopathogenic activities on the host pine Pinus massoniana, whereas P. citrinum, Purpureocillium lilacinum, and certain species of Fusarium spp.-isolated from M. alternatus body surfaces-exhibited remarkably higher phytopathogenicity. Our results provide a broader view of the entomopathogenic fungal community on the vector beetle M. alternatus, some of which are reported for the first time on Monochamus spp. in China. Moreover, this beetle might be more highly-risk in pine forests than previously considered, as a potential multi-pathogen vector of both PWN and phytopathogenic fungi.

4.
mSystems ; 6(3): e0119020, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061577

RESUMO

Zika virus (ZIKV; Flaviviridae) is a devastating virus transmitted to humans by the mosquito Aedes aegypti. The interaction of the virus with the mosquito vector is poorly known. The double-stranded RNA (dsRNA)-mediated interruption or activation of immunity-related genes in the Toll, IMD, JAK-STAT, and short interfering RNA (siRNA) pathways did not affect ZIKV infection in A. aegypti. Transcriptome-based analysis indicated that most immunity-related genes were upregulated in response to ZIKV infection, including leucine-rich immune protein (LRIM) genes. Further, there was a significant increment in the ZIKV load in LRIM9-, LRIM10A-, and LIRM10B-silenced A. aegypti, suggesting their function in modulating viral infection. Further, gene function enrichment analysis revealed that viral infection increased global ribosomal activity. Silencing of RpL23 and RpL27, two ribosomal large subunit genes, increased mosquito resistance to ZIKV infection. In vitro fat body culture assay revealed that the expression of RpL23 and RpL27 was responsive to the Juvenile hormone (JH) signaling pathway. These two genes were transcriptionally regulated by JH and its receptor methoprene-tolerant (Met) complex. Silencing of Met also inhibited ZIKV infection in A. aegypti. This suggests that ZIKV enhances ribosomal activity through JH regulation to promote infection in mosquitoes. Together, these data reveal A. aegypti immune responses to ZIKV and suggest a control strategy that reduces ZIKV transmission by modulating host factors. IMPORTANCE Most flaviviruses are transmitted between hosts by arthropod vectors such as mosquitoes. Since therapeutics or vaccines are lacking for most mosquito-borne diseases, reducing the mosquito vector competence is an effective way to decrease disease burden. We used high-throughput sequencing technology to study the interaction between mosquito Aedes aegypti and ZIKV. Leucine-rich immune protein (LRIM) genes were involved in the defense in response to viral infection. In addition, RNA interference (RNAi) silencing of RpL23 and RpL27, two JH-regulated ribosomal large subunit genes, suppressed ZIKV infection in A. aegypti. These results suggest a novel control strategy that could block the transmission of ZIKV.

5.
Microb Cell Fact ; 17(1): 116, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30037328

RESUMO

BACKGROUND: Pine wilt disease, caused by the pinewood nematode Bursaphelenchus xylophilus (PWN), is an important destructive disease of pine forests worldwide. In addition to behaving as a plant-parasitic nematode that feeds on epithelial cells of pines, this pest relies on fungal associates for completing its life cycle inside pine trees. Manipulating microbial symbionts to block pest transmission has exhibited an exciting prospect in recent years; however, transforming the fungal mutualists to toxin delivery agents for suppressing PWN growth has received little attention. RESULTS: In the present study, a nematicidal gene cry5Ba3, originally from a soil Bacillus thuringiensis (Bt) strain, was codon-preferred as cry5Ba3Φ and integrated into the genome of a fungus eaten by PWN, Botrytis cinerea, using Agrobacterium tumefaciens-mediated transformation. Supplementing wild-type B. cinerea extract with that from the cry5Ba3Φ transformant significantly suppressed PWN growth; moreover, the nematodes lost fitness significantly when feeding on the mycelia of the cry5Ba3Φ transformant. N-terminal deletion of Cry5Ba3Φ protein weakened the nematicidal activity more dramatically than did the C-terminal deletion, indicating that domain I (endotoxin-N) plays a more important role in its nematicidal function than domain III (endotoxin-C), which is similar to certain insecticidal Cry proteins. CONCLUSIONS: Transformation of Bt nematicidal cry genes in fungi can alter the fungivorous performance of B. xylophilus and reduce nematode fitness. This finding provides a new prospect of developing strategies for breaking the life cycle of this pest in pines and controlling pine wilt disease.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Botrytis/metabolismo , Nematoides/metabolismo , Nematoides/microbiologia , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Botrytis/genética , Nematoides/genética , Pinus/parasitologia
6.
Microbiome ; 6(1): 132, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30053907

RESUMO

BACKGROUND: There is growing evidence that some devastating biotic invasions are facilitated by microbial symbionts. The red turpentine beetle (RTB), an innocuous secondary insect attacking weakened trees in North America, has formed an invasive complex with the fungus Leptographium procerum in China, and this invasive beetle-fungus symbiotic complex is capable of attacking and killing healthy pines. A previous study demonstrated that three Chinese-resident fungi, newly acquired by RTB in China, induce high levels of a phenolic defensive chemical, naringenin, in pines and this invasive beetle-fungus complex is suppressed by elevated levels of naringenin while the beetle uses its gallery as an external detoxification system in which particular yeast-like fungi and bacterial species biodegrade naringenin. However, the functional roles of key microbial players in the symbiosis, contained within the microbiome of the bark beetle gallery, have not been well elucidated. RESULTS: In this report, the symbiotic naringenin-degrading microbiota were found to increase RTB survivorship in the presence of induced host defenses, and potential genes associated with degradation pathways were discovered. While fungi in the gallery microbiota had little involvement in naringenin degradation, bacterial community structure within the beetle gallery was highly correlated to naringenin degrading activity. Phylotypes of the Gram-negative bacterial genus Novosphingobium, which possessed genes involved in degradation pathways, were highly correlated to naringenin degradation activities and RTB associated with an isolated species of this genus acquired protection against naringenin and gained fitness. CONCLUSIONS: Our results demonstrated that symbiotic bacterial community of RTB galleries enhances the survivorship and overall fitness of invasive beetles by degrading the host phenolic naringenin, ultimately overcoming the tree defenses and facilitating the success of the invasive beetle-fungi complex. This dynamic interplay between the invasive insect pest and multipartite microbes suggests a putative mechanism in invasion ecology for mitigating biotic resistance to symbiotic invasion.


Assuntos
Besouros/crescimento & desenvolvimento , Flavanonas/metabolismo , Bactérias Gram-Negativas/fisiologia , Pinus/química , Animais , Proteínas de Bactérias/genética , Besouros/microbiologia , Proteínas Fúngicas/genética , Redes Reguladoras de Genes , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/isolamento & purificação , Microbiota , Filogenia , Pinus/parasitologia , Proteólise , Saccharomycetales/fisiologia , Simbiose
7.
Sci Rep ; 6: 33110, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27621032

RESUMO

Microbial symbionts are known to assist exotic pests in their colonization of new host plants. However, there has been little evidence linking symbiotic invasion success to mechanisms for mitigation of native plant resistance. The red turpentine beetle (RTB) was introduced with a fungus, Leptographium procerum, to China from the United States and became a destructively invasive symbiotic complex in natural Pinus tabuliformis forests. Here, we report that three Chinese-resident fungi, newly acquired by RTB in China, induce high levels of a phenolic defensive chemical, naringenin, in pines. This invasive beetle-fungus complex is suppressed by elevated levels of naringenin. However, cryptic microbiotas in RTB galleries strongly degrade naringenin, and pinitol, the main soluble carbohydrate of P. tabuliformis, is retained in L. procerum-infected phloem and facilitate naringenin biodegradation by the microbiotas. These results demonstrate that cryptic microbiota mitigates native host plant phenolic resistance to an invasive symbiotic complex, suggesting a putative mechanism for reduced biotic resistance to symbiotic invasion.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Besouros/crescimento & desenvolvimento , Resistência à Doença/fisiologia , Microbiota/fisiologia , Pinus/microbiologia , Pinus/parasitologia , Doenças das Plantas , Animais , China , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia
8.
Sci Rep ; 6: 20135, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26839264

RESUMO

Insect-microbe interaction is a key area of research in multiplayer symbiosis, yet little is known about the role of microbe-microbe interactions in insect-microbe symbioses. The red turpentine beetle (RTB) has destroyed millions of healthy pines in China and forms context-dependent relationships with associated fungi. The adult-associated fungus Leptographium procerum have played key roles in RTB colonization. However, common fungal associates (L. procerum and Ophiostoma minus) with RTB larvae compete for carbohydrates. Here, we report that dominant bacteria associated with RTB larvae buffer the competition by inhibiting the growth and D-glucose consumption of O. minus. However, they didn't inhibit the growth of L. procerum and forced this fungus to consume D-pinitol before consuming D-glucose, even though D-glucose was available and a better carbon source not only for L. procerum but also for RTB larvae and associated bacteria. This suggests the most frequently isolated bacteria associated with RTB larvae could affect fungal growth and the sequence of carbohydrate consumption. Thus, this regulates carbohydrate allocation in the RTB larva-microbe community, which may in turn benefit RTB larvae development. We also discuss the mechanism of carbohydrate allocation in the RTB larva-microbe community, and its potential contribution to the maintenance of a symbiotic community.


Assuntos
Bactérias/isolamento & purificação , Besouros/microbiologia , Glucose/metabolismo , Ophiostomatales/crescimento & desenvolvimento , Animais , Bactérias/classificação , Inositol/análogos & derivados , Inositol/metabolismo , Larva/microbiologia , Simbiose
9.
Integr Zool ; 10(5): 453-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25939920

RESUMO

Mutualism between insects and fungi drives insect evolutionary diversification and niche expansion; for invasive insects, however, mechanisms by which they maintain mutualistic relationships with beneficial fungi have not been clearly explored. Here, we report that an invasive herbivorous insect, the red turpentine beetle (RTB), with its co-invasive mutualistic fungus, Leptographium procerum, has newly acquired a set of sympatric fungi during invasion, which could potentially outcompete the RTB mutualistic fungus. Host pine Pinus tabuliformis exhibited more rosin-based responses to the sympatric fungi than to RTB mutualistic fungus and, in return, the rapidly induced rosin suppressed the sympatric fungi more significantly than L. procerum. In addition, from direct fungal pairing competitions, we found that the antagonistic effects of sympatric fungi on L. procerum were drastically reduced under induced rosin defense. Our results together with previous findings imply that pine oleoresin defense (turpentine and rosin) might have been exploited by the invasive mutualistic fungus L. procerum, which helps to explain its invasion success and, by extension, its mutualistic partner RTB in China.


Assuntos
Insetos Vetores/microbiologia , Ophiostomatales/fisiologia , Pinus/microbiologia , Resinas Vegetais/química , Simbiose , Gorgulhos/microbiologia , Abietanos/química , Abietanos/farmacologia , Animais , China , Herbivoria , Espécies Introduzidas , Ophiostomatales/efeitos dos fármacos , Ophiostomatales/crescimento & desenvolvimento , Pinus/metabolismo , Simpatria
10.
Microb Ecol ; 70(4): 1012-23, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25985770

RESUMO

Bark beetles are the most important mortality agent in coniferous forests, and pheromones play important roles in their management. Dendroctonus valens LeConte was introduced from North America to China and has killed millions of healthy pines there. Trapping with semiochemicals and pheromones was deployed in D. valens management in the last decade, but little is known about the ability of gut bacteria to produce the pheromone. In this study, we analyzed the volatiles in D. valens guts and frass after antibiotic treatment versus control. Then, we isolated and identified the bacteria in D. valens guts and frass, examined verbenone (a multifunctional pheromone of D. valens) production by 16 gut bacterial isolates from the precursor cis-verbenol at three concentrations, and further compared the cytotoxicities between the cis-verbenol and verbenone to the bacterial isolates. cis-Verbenol was not detected in the frass in the control group, but it was in the antibiotic treatment. The amount of verbenone was significantly suppressed in D. valens guts after antibiotic treatment versus control. Thirteen out of 16 gut bacterial isolates were capable of cis-verbenol to verbenone conversion, and cis-verbenol had stronger cytotoxicities than verbenone to all tested gut bacterial isolates. The bacterial species capable of verbenone production largely exists in D. valens guts and frass, suggesting that gut-associated bacteria may help the bark beetle produce the pheromone verbenone in guts and frass. The bacteria may benefit from the conversion due to the reduced cytotoxicity from the precursor to the beetle pheromone.


Assuntos
Bactérias/metabolismo , Besouros/metabolismo , Besouros/microbiologia , Microbioma Gastrointestinal/fisiologia , Terpenos/metabolismo , Animais , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Comportamento Animal , Monoterpenos Bicíclicos , China , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Testes de Sensibilidade Microbiana , Monoterpenos/metabolismo , Monoterpenos/toxicidade , Controle Biológico de Vetores/métodos , Feromônios/biossíntese , Terpenos/toxicidade
11.
Biol Lett ; 9(1): 20120787, 2013 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-23193043

RESUMO

Bark beetles are among the most destructive of pine forest pests and they form close symbiotic relationships with ophiostomatoid fungi. Although some fungi are considered to be mutualistic symbionts of bark beetles with respect to the supply of nutrients, detrimental effects of fungal symbionts on larval growth have also been frequently reported. The mechanisms of such antagonistic effects are hypothesized to be a decrease in nutritional resources caused by competition for saccharides by the fungi. Here, we provide experimental evidence that three beetle-associated fungi modify the nutritional content of an artificial phloem diet, leading to a detrimental effect on the growth of Dendroctonus valens larvae. When larvae were fed a diet of pine phloem in agar medium colonized with any of these fungi, feeding activity was not affected but weight significantly decreased. Additional analysis showed that fungi depleted the fructose and glucose concentrations in the phloem media. Furthermore, these detrimental effects were neutralized by supplementing the media with fructose or glucose, suggesting that fungi may affect larval growth by modifying diet saccharide contents. These data indicate that fungus-induced nutritional changes in bark beetle diet can affect larval growth, and that the mechanism involves fungus-induced saccharide depletion from the larval diet.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Ophiostomatales/fisiologia , Gorgulhos/microbiologia , Gorgulhos/fisiologia , Animais , China , Comportamento Alimentar , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/fisiologia , Monossacarídeos/metabolismo , Ophiostomatales/isolamento & purificação , Floema/metabolismo , Floema/microbiologia , Pinus/microbiologia , Polissacarídeos/metabolismo , Distribuição Aleatória , Especificidade da Espécie , Simbiose , Gorgulhos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...