Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 227: 106229, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36455719

RESUMO

25-Hydroxyvitamin D3 (25(OH)D3) is present in the human circulation esterified to sulfate with some studies showing that 25(OH)D3 3-sulfate levels are almost as high as unconjugated 25(OH)D3. Vitamin D3 is also present in human serum in the sulfated form as are other metabolites. Our aim was to determine whether sulfated forms of vitamin D3 and vitamin D3 metabolites can be acted on by vitamin D-metabolizing cytochromes P450 (CYPs), one of which (CYP11A1) is known to act on cholesterol sulfate. We used purified, bacterially expressed CYPs to test if they could act on the sulfated forms of their natural substrates. Purified CYP27A1 converted vitamin D3 sulfate to 25(OH)D3 3-sulfate with a catalytic efficiency (kcat/Km) approximately half that for the conversion of vitamin D3 to 25(OH)D3. Similarly, the rate of metabolism of vitamin D3 sulfate was half that of vitamin D3 for CYP27A1 in rat liver mitochondria. CYP2R1 which is also a vitamin D 25-hydroxylase did not act on vitamin D3 sulfate. CYP11A1 was able to convert vitamin D3 sulfate to 20(OH)D3 3-sulfate but at a considerably lower rate than for conversion of vitamin D3 to 20(OH)D3. 25(OH)D3 3-sulfate was not metabolized by the activating enzyme, CYP27B1, nor by the inactivating enzyme, CYP24A1. Thus, we conclude that 25(OH)D3 3-sulfate in the circulation may act as a pool of metabolically inactive vitamin D3 to be released by hydrolysis at times of need whereas vitamin D3 sulfate can be metabolized in a similar manner to free vitamin D3 by CYP27A1 and to a lesser degree by CYP11A1.


Assuntos
Calcifediol , Enzima de Clivagem da Cadeia Lateral do Colesterol , Humanos , Ratos , Animais , Calcifediol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Sulfatos , Colecalciferol/metabolismo , Vitamina D , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Vitamina D3 24-Hidroxilase/metabolismo , Colestanotriol 26-Mono-Oxigenase/genética , Colestanotriol 26-Mono-Oxigenase/metabolismo
2.
J Steroid Biochem Mol Biol ; 186: 4-21, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30205156

RESUMO

Vitamin D, referring to the two forms, D2 from the diet and D3 primarily derived from phototransformation in the skin, is a prohormone important in human health. The most hormonally active form, 1α,25-dihydroxyvitamin D (1α,25(OH)2D), formed from vitamin D via 25-hydroxyvitamin D (25(OH)D), is not only important for regulating calcium metabolism, but has many pleiotropic effects including regulation of the immune system and has anti-cancer properties. The major circulating form of vitamin D is 25(OH)D and both D2 and D3 forms are routinely measured by LC/MS/MS to assess vitamin D status, due to their relatively long half-lives and much higher concentrations compared to 1α,25(OH)2D. Inactivation of both 25(OH)D and 1α,25(OH)2D is catalyzed by CYP24A1 and 25-hydroxyvitamin D3 3-epimerase. Initial products from these enzymes acting on 25(OH)D3 are 24R,25(OH)2D3 and 3-epi-25(OH)D3, respectively, and both of these can also be measured routinely in some clinical laboratories to further document vitamin D status. With advances in LC/MS/MS and its increased availability, and with the help of studies with recombinant vitamin D-metabolizing enzymes, many other vitamin D metabolites have now been detected and in some cases quantitated, in human serum. CYP11A1 which catalyzes the first step in steroidogenesis, has been found to also act on vitamins D3 and D2 hydroxylating both at C20, but with some secondary metabolites produced by subsequent hydroxylations at other positions on the side chain. The major vitamin D3 metabolite, 20S-hydroxyvitamin D3 (20S(OH)D3), shows biological activity, often similar to 1α,25(OH)2D3 but without calcemic effects. Using standards produced enzymatically by purified CYP11A1 and characterized by NMR, many of these new metabolites have been detected in human serum, with semi-quantitative measurement of 20S(OH)D3 indicating it is present at comparable concentrations to 24R,25(OH)2D3 and 3-epi-25(OH)D3. Recently, vitamin D-related hydroxylumisterols derived from lumisterol3, a previtamin D3 photoproduct, have also been measured in human serum and displayed biological activity in initial in vitro studies. With the current extensive knowledge on the reactions and pathways of metabolism of vitamin D, especially those catalyzed by CYP24A1, CYP27A1, CYP27B1, CYP3A4 and CYP11A1, it is likely that many other of the resulting hydroxyvitamin D metabolites will be measured in human serum in the future, some contributing to a more detailed understanding of vitamin D status in health and disease.


Assuntos
Metaboloma , Vitamina D/sangue , Vitamina D/metabolismo , Vitaminas/sangue , Vitaminas/metabolismo , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Cromatografia Líquida/métodos , Humanos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Vitamina D/análise , Vitamina D3 24-Hidroxilase/metabolismo , Vitaminas/análise
3.
J Steroid Biochem Mol Biol ; 181: 1-10, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29452159

RESUMO

Prolonged exposure of the skin to UV radiation causes previtamin D3, the initial photoproduct formed by opening of the B ring of 7-dehydrocholesterol, to undergo a second photochemical reaction where the B-ring is reformed giving lumisterol3 (L3), a stereoisomer of 7-dehydrocholesterol. L3 was believed to be an inactive photoproduct of excessive UV radiation whose formation prevents excessive vitamin D production. Recently, we reported that L3 is present in serum and that CYP11A1 can act on L3 producing monohydroxy- and dihydroxy-metabolites which inhibit skin cell proliferation similarly to 1α,25-dihydroxyvitamin D3. In this study we tested the ability of human CYP27A1 to hydroxylate L3. L3 was metabolized by purified CYP27A1 to 3 major products identified as 25-hydroxyL3, (25R)-27-hydroxyL3 and (25S)-27-hydroxyL3, by NMR. These three products were also seen when mouse liver mitochondria containing CYP27A1 were incubated with L3. The requirement for CYP27A1 for their formation by mitochondria was confirmed by the inhibition of their synthesis by 5ß-cholestane-3α,7α,12α-triol, an intermediate in bile acid synthesis which serves as an efficient competitive substrate for CYP27A1. CYP27A1 displayed a high kcat for the metabolism of L3 (76 mol product/min/mol CYP27A1) and a catalytic efficiency (kcat/Km) that was 260-fold higher than that for vitamin D3. The CYP27A1-derived hydroxy-derivatives inhibited the proliferation of cultured human melanoma cells and colony formation with IC50 values in the nM range. Thus, L3 is metabolized efficiently by CYP27A1 with hydroxylation at C25 or C27 producing metabolites potent in their ability to inhibit melanoma cell proliferation, supporting that L3 is a prohormone which can be activated by CYP-dependent hydroxylations.


Assuntos
Colecalciferol/análogos & derivados , Colecalciferol/metabolismo , Colestanotriol 26-Mono-Oxigenase/metabolismo , Ergosterol/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Hidroxilação , Camundongos , Estereoisomerismo
4.
Sci Rep ; 8(1): 1478, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367669

RESUMO

20S-hydroxyvitamin D3 [20S(OH)D3] is anti-inflammatory and not hypercalcemic, suggesting its potential as a lead compound. In this study, side chain modified 20S(OH)D3 analogs (4, 13, 23 and 33) together with their 1α-OH derivatives were synthesized and their metabolism and biological activities tested. 4, 13 and 23 are good substrates for CYP27B1, enabling enzymatic synthesis of their 1α-OH derivatives 5, 14 and 24. However, 33 could not be hydroxylated by CYP27B1 and acts as an inhibitor. All analogs were poorer substrates for CYP24A1 than calcitriol, indicating improved catabolic stability. While the parent analogs showed minimal VDR stimulating activity, their 1α-OH derivatives were potent VDR agonists. 4, 5, 14 and 24 significantly upregulated the expression of CYP24A1 at the mRNA level, consistent with their VDR activation abilities and indicating that 1α-hydroxylation is required to produce analogs with strong activity. These analogs have anti-inflammatory activities that are influenced by side chain composition and by 1α-hydroxylation. To understand their molecular interactions with the VDR, 20S(OH)D3, 4 and 33 were co-crystalized with the VDR ligand binding domain, which revealed subtle differences to the calcitriol-bound receptor. This study demonstrates the potential of the 20S(OH)D3 scaffold for the development of novel anti-inflammatory agents.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Calcifediol/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Receptores de Calcitriol/agonistas , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Calcifediol/química , Calcifediol/farmacologia , Células Cultivadas , Humanos , Hidroxilação , Queratinócitos/citologia , Queratinócitos/metabolismo , Vitamina D3 24-Hidroxilase/metabolismo
5.
J Steroid Biochem Mol Biol ; 177: 59-69, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28716760

RESUMO

Recent studies indicate that CYP2R1 is the major 25-hydroxylase catalyzing the first step in vitamin D activation. Since the catalytic properties of CYP2R1 have been poorly studied to date and it is a membrane protein, we examined the purified enzyme in a membrane environment. CYP2R1 was expressed in E. coli and purified by nickel affinity- and hydrophobic interaction-chromatography and assayed in a reconstituted membrane system comprising phospholipid vesicles plus purified human NADPH-P450 oxidoreductase. CYP2R1 converted vitamin D3 in the vesicle membrane to 25-hydroxyvitamin D3 [25(OH)D3] with good adherence to Michaelis-Menten kinetics. The kinetic parameters for 25-hydroxylation of vitamin D3 by the two major vitamin D 25-hydroxylases, CYP2R1 and CYP27A1, were examined in vesicles under identical conditions. CYP2R1 displayed a slightly lower kcat than CYP27A1 but a much lower Km for vitamin D3, and thus an overall 17-fold higher catalytic efficiency (kcat/Km), consistent with CYP2R1 being the major vitamin D 25-hydroxylase. 20-Hydroxyvitamin D3 [20(OH)D3], the main product of vitamin D3 activation by an alternative pathway catalyzed by CYP11A1, was metabolized by CYP2R1 to 20,25-dihydroxyvitamin D3 [20,25(OH)2D3], with catalytic efficiency similar to that for the 25-hydroxylation of vitamin D3. 20,25(OH)2D3 retained full, or somewhat enhanced activity compared to the parent 20(OH)D3 for the inhibition of the proliferation of melanocytes and dermal fibroblasts, with a potency comparable to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The 20,25(OH)2D3 was also able to act as an inverse agonist on retinoic acid-related orphan receptor α, like its parent 20(OH)D3. Thus, the major findings of this study are that CYP2R1 can metabolize substrates in a membrane environment, the enzyme displays higher catalytic efficiency than CYP27A1 for the 25-hydroxylation of vitamin D, it efficiently hydroxylates 20(OH)D3 at C25 and this product retains the biological activity of the parent compound.


Assuntos
Calcifediol/análogos & derivados , Colestanotriol 26-Mono-Oxigenase/metabolismo , Família 2 do Citocromo P450/metabolismo , Vitaminas/farmacologia , Calcifediol/farmacologia , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colestanotriol 26-Mono-Oxigenase/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450/genética , Escherichia coli/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Hidroxilação , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
6.
J Steroid Biochem Mol Biol ; 159: 131-41, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26970587

RESUMO

20S-Hydroxyvitamin D3 [20(OH)D3] is the biologically active major product of the action of CYP11A1 on vitamin D3 and is present in human plasma. 20(OH)D3 displays similar therapeutic properties to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], but without causing hypercalcaemia and therefore has potential for development as a therapeutic drug. CYP24A1, the kidney mitochondrial P450 involved in inactivation of 1,25(OH)2D3, can hydroxylate 20(OH)D3 at C24 and C25, with the products displaying more potent inhibition of melanoma cell proliferation than 20(OH)D3. CYP3A4 is the major drug-metabolising P450 in liver endoplasmic reticulum and can metabolise other active forms of vitamin D, so we examined its ability to metabolise 20(OH)D3. We found that CYP3A4 metabolises 20(OH)D3 to three major products, 20,24R-dihydroxyvitamin D3 [20,24R(OH)2D3], 20,24S-dihydroxyvitamin D3 [20,24S(OH)2D3] and 20,25-dihydroxyvitamin D3 [20,25(OH)2D3]. 20,24R(OH)2D3 and 20,24S(OH)2D3, but not 20,25(OH)2D3, were further metabolised to trihydroxyvitamin D3 products by CYP3A4 but with low catalytic efficiency. The same three primary products, 20,24R(OH)2D3, 20,24S(OH)2D3 and 20,25(OH)2D3, were observed for the metabolism of 20(OH)D3 by human liver microsomes, in which CYP3A4 is a major CYP isoform present. Addition of CYP3A family-specific inhibitors, troleandomycin and azamulin, almost completely inhibited production of 20,24R(OH)2D3, 20,24S(OH)2D3 and 20,25(OH)2D3 by human liver microsomes, further supporting that CYP3A4 plays the major role in 20(OH)D3 metabolism by microsomes. Since both 20,24R(OH)2D3 and 20,25(OH)2D3 have previously been shown to display enhanced biological activity in inhibiting melanoma cell proliferation, our results show that CYP3A4 further activates, rather than inactivates, 20(OH)D3.


Assuntos
Calcifediol/análogos & derivados , Citocromo P-450 CYP3A/fisiologia , Vias Biossintéticas , Calcifediol/biossíntese , Calcifediol/química , Citocromo P-450 CYP3A/química , Feminino , Humanos , Hidroxilação , Cinética , Masculino , Microssomos Hepáticos/enzimologia
7.
J Med Chem ; 58(19): 7881-7, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26367019

RESUMO

Bioactive vitamin D3 metabolites 20S,24S-dihydroxyvitamin D3 [20S,24S(OH)2D3] and 20S,24R-dihydroxyvitamin D3 [20S,24R(OH)2D3] were chemically synthesized and confirmed to be identical to their enzymatically generated counterparts. The absolute configurations at C24 and its influence on the kinetics of 1α-hydroxylation by CYP27B1 were determined. Their corresponding 1α-hydroxyl derivatives were subsequently produced. Biological comparisons of these products showed different properties with respect to vitamin D3 receptor activation, anti-inflammatory activity, and antiproliferative activity, with 1α,20S,24R(OH)2D3 being the most potent compound.


Assuntos
Interferon gama/antagonistas & inibidores , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Células CACO-2/efeitos dos fármacos , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Hidroxilação , Isomerismo , Espectroscopia de Ressonância Magnética , Camundongos Endogâmicos DBA , Estrutura Molecular , Receptores de Calcitriol/genética , Receptores Imunológicos/metabolismo , Vitamina D/química
8.
J Steroid Biochem Mol Biol ; 144 Pt B: 286-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25138634

RESUMO

20-Hydroxyvitamin D3 [20(OH)D3], the major product of CYP11A1 action on vitamin D3, is biologically active and like 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] can inhibit proliferation and promote differentiation of a range of cells, and has anti-inflammatory properties. However, unlike 1,25(OH)2D3, it does not cause toxic hypercalcemia at high doses and is therefore a good candidate for therapeutic use to treat hyperproliferative and autoimmune disorders. In this study we analyzed the ability of mouse liver microsomes to metabolize 20(OH)D3. The two major products were identified from authentic standards as 20,24-dihydroxyvitamin D3 [20,24(OH)2D3] and 20,25-dihydroxyvitamin D3 [20,25(OH)2D3]. The reactions for synthesis of these two products from 20(OH)D3 displayed similar Km values suggesting that they were catalyzed by the same cytochrome P450. Some minor metabolites were produced by reactions with higher Km values for 20(OH)D3. Some metabolites gave mass spectra suggesting that they were the result of hydroxylation followed by dehydrogenation. One product had an increase in the wavelength for maximum absorbance from 263nm seen for 20(OH)D3, to 290nm, suggesting a new double bond was interacting with the vitamin D-triene chromophore. The two major products, 20,24(OH)2D3 and 20,25(OH)2D3 have both previously been shown to have higher potency for inhibition of colony formation by melanoma cells than 20(OH)D3, thus it appears that metabolism of 20(OH)D3 by mouse liver microsomes can generate products with enhanced activity.


Assuntos
Calcifediol/análogos & derivados , Microssomos Hepáticos/metabolismo , Animais , Calcifediol/metabolismo , Feminino , Hidroxilação , Camundongos Endogâmicos C57BL
9.
Int J Biochem Cell Biol ; 55: 24-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25130438

RESUMO

Lumisterol3 (L3) is produced by photochemical transformation of 7-dehydrocholesterol (7-DHC) during exposure to high doses of ultraviolet B radiation. It has been assumed that L3 is biologically inactive and is not metabolized in the body. However, some synthetic derivatives of L3 display biological activity. The aim of this study was to test the ability of CYP11A1 to metabolize L3. Incubation of L3 with bovine or human CYP11A1 resulted in the formation of three major and a number of minor products. The catalytic efficiency of bovine CYP11A1 for metabolism of L3 dissolved in 2-hydroxypropyl-ß-cyclodextrin was approximately 20% of that reported for vitamin D3 and cholesterol. The structures of the three major products were identified as 24-hydroxy-L3, 22-hydroxy-L3 and 20,22-dihydroxy-L3 by NMR. 22-Hydroxy-L3 was further metabolized by bovine CYP11A1 to 20,22-dihydroxy-L3. Both 22-hydroxy-L3 and 20,22-dihydroxy-L3 gave rise to a minor metabolite identified from authentic standard and mass spectrometry as pregnalumisterol (pL) (product of C20-C22 side chain cleavage of L3) and two trihydroxy-L3 products. The capability of tissues expressing CYP11A1 to metabolize L3 was demonstrated using pig adrenal fragments where 20,22-dihydroxy-L3, 22-hydroxy-L3, 24-hydroxy-L3 and pL were detected by LC/MS. Thus, we have established that L3 is metabolized by CYP11A1 to 22- and 24-hydroxy-L3 and 20,22-dihydroxy-L3 as major products, as well as to pL and other minor products. The previously reported biological activity of pL and the presence of CYP11A1 in skin suggest that this pathway may serve to produce biologically active products from L3, emphasizing a novel role of CYP11A1 in sterol metabolism.


Assuntos
Glândulas Suprarrenais/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Ergosterol/metabolismo , Redes e Vias Metabólicas , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Ergosterol/química , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...