Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
3.
Artigo em Inglês | MEDLINE | ID: mdl-36103099

RESUMO

PURPOSE: Inflammation associated endothelial cell (EC) dysfunction is key to atherosclerotic disease. Recent studies have demonstrated a protective role of amitriptyline in cardiomyocytes induced by hypoxia/reoxygenation. However, the mechanism by which amitriptyline regulates the inflammatory reaction in ECs remains unknown. Thus, the aim of this study was to investigate whether amitriptyline protects against inflammation in TNF-α-treated ECs. METHODS: HUVECs were incubated with amitriptyline (2.5 µM) or TNF-α (20 ng/ml) for 24 h. EdU, tube formation, transwell, DHE fluorescence staining, and monocyte adhesion assays were performed to investigate endothelial function. Thoracic aortas were isolated from mice, and vascular tone was measured with a wire myograph system. The levels of ICAM-1, VCAM-1, MCP-1, phosphorylated MAPK and NF-κB were detected using western blotting. RESULTS: Amitriptyline increased the phosphorylation of nitric oxide synthase (eNOS) and the release of NO. Amitriptyline significantly inhibited TNF-α-induced increases in ASMase activity and the release of ceramide and downregulated TNF-α-induced expression of proinflammatory proteins, including ICAM-1, VCAM-1, and MCP-1 in ECs, as well as the secretion of sICAM-1 and sVCAM-1. TNF-α treatment obviously increased monocyte adhesion and ROS production and impaired HUVEC proliferation, migration and tube formation, while amitriptyline rescued proliferation, migration, and tube formation and decreased monocyte adhesion and ROS production. Additionally, we demonstrated that amitriptyline suppressed TNF-α-induced MAPK phosphorylation as well as the activity of NF-κB in HUVECs. The results showed that the relaxation response of aortic rings to acetylcholine in the WT-TNF-α group was much lower than that in the WT group, and the sensitivity of aortic rings to acetylcholine in the WT-TNF-α group and WT-AMI-TNF-α group was significantly higher than that in the WT-TNF-α group. CONCLUSION: These results suggest that amitriptyline reduces endothelial inflammation, consequently improving vascular endothelial function. Thus, the identification of amitriptyline as a potential strategy to improve endothelial function is important for preventing vascular diseases.

4.
Front Mol Neurosci ; 15: 889534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600075

RESUMO

Purpose: To identify novel genetic causes of febrile seizures (FS) and epilepsy with febrile seizures plus (EFS+). Methods: We performed whole-exome sequencing in a cohort of 32 families, in which at least two individuals were affected by FS or EFS+. The probands, their parents, and available family members were recruited to ascertain whether the genetic variants were co-segregation. Genes with repetitively identified variants with segregations were selected for further studies to define the gene-disease association. Results: We identified two heterozygous ATP6V0C mutations (c.64G > A/p.Ala22Thr and c.361_373del/p.Thr121Profs*7) in two unrelated families with six individuals affected by FS or EFS+. The missense mutation was located in the proteolipid c-ring that cooperated with a-subunit forming the hemichannel for proton transferring. It also affected the hydrogen bonds with surround residues and the protein stability, implying a damaging effect. The frameshift mutation resulted in a loss of function by yielding a premature termination of 28 residues at the C-terminus of the protein. The frequencies of ATP6V0C mutations identified in this cohort were significantly higher than that in the control populations. All the six affected individuals suffered from their first FS at the age of 7-8 months. The two probands later manifested afebrile seizures including myoclonic seizures that responded well to lamotrigine. They all displayed favorable outcomes without intellectual or developmental abnormalities, although afebrile seizures or frequent seizures occurred. Conclusion: This study suggests that ATP6V0C is potentially a candidate pathogenic gene of FS and EFS+. Screening for ATP6V0C mutations would help differentiating patients with Dravet syndrome caused by SCN1A mutations, which presented similar clinical manifestation but different responses to antiepileptic treatment.

5.
Front Mol Neurosci ; 15: 860662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600082

RESUMO

Purpose: Previously, mutations in the voltage-gated calcium channel subunit alpha1 A (CACNA1A) gene have been reported to be associated with paroxysmal disorders, typically as episodic ataxia type 2. To determine the relationship between CACNA1A and epilepsies and the role of molecular sub-regional on the phenotypic heterogeneity. Methods: Trio-based whole-exome sequencing was performed in 318 cases with partial epilepsy and 150 cases with generalized epilepsy. We then reviewed all previously reported CACNA1A mutations and analyzed the genotype-phenotype correlations with molecular sub-regional implications. Results: We identified 12 CACNA1A mutations in ten unrelated cases of epilepsy, including four de novo null mutations (c.2963_2964insG/p.Gly989Argfs*78, c.3089 + 1G > A, c.4755 + 1G > T, and c.6340-1G > A), four de novo missense mutations (c.203G > T/p.Arg68Leu, c.3965G > A/p.Gly1322Glu, c.5032C > T/p.Arg1678Cys, and c.5393C > T/p.Ser1798Leu), and two pairs of compound heterozygous missense mutations (c.4891A > G/p.Ile1631Val& c.5978C > T/p.Pro1993Leu and c.3233C > T/p.Ser1078Leu&c.6061G > A/p.Glu2021Lys). The eight de novo mutations were evaluated as pathogenic or likely pathogenic mutations according to the criteria of American College of Medical Genetics and Genomics (ACMG). The frequencies of the compound heterozygous CACNA1A mutations identified in this cohort were significantly higher than that in the controls of East Asian and all populations (P = 7.30 × 10-4, P = 2.53 × 10-4). All of the ten cases were ultimately seizure-free after antiepileptic treatment, although frequent epileptic seizures were observed in four cases. Further analysis revealed that episodic ataxia type 2 (EA2) had a tendency of higher frequency of null mutations than epilepsies. The missense mutations in severe epileptic phenotypes were more frequently located in the pore region than those in milder epileptic phenotypes (P = 1.67 × 10-4); de novo mutations in the epilepsy with intellectual disability (ID) had a higher percentage than those in the epilepsy without ID (P = 1.92 × 10-3). Conclusion: This study suggested that CACNA1A mutations were potentially associated with pure epilepsy and the spectrum of epileptic phenotypes potentially ranged from the mild form of epilepsies such as absence epilepsy or partial epilepsy, to the severe form of developmental epileptic encephalopathy. The clinical phenotypes variability is potentially associated with the molecular sub-regional of the mutations.

6.
Acta Pharmacol Sin ; 42(1): 55-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32504066

RESUMO

Estrogen deficiency induces cardiac dysfunction and increases the risk of cardiovascular disease in postmenopausal women and in those who underwent bilateral oophorectomy. Previous evidence suggests that puerarin, a phytoestrogen, exerts beneficial effects on cardiac function in patients with cardiac hypertrophy. In this study, we investigated whether puerarin could prevent cardiac hypertrophy and remodeling in ovariectomized, aortic-banded rats. Female SD rats subjected to bilateral ovariectomy (OVX) plus abdominal aortic constriction (AAC). The rats were treated with puerarin (50 mg·kg-1 ·d-1, ip) for 8 weeks. Then echocardiography was assessed, and the rats were sacrificed, their heart tissues were extracted and allocated for further experiments. We showed that puerarin administration significantly attenuated cardiac hypertrophy and remodeling in AAC-treated OVX rats, which could be attributed to activation of PPARα/PPARγ coactivator-1 (PGC-1) pathway. Puerarin administration significantly increased the expression of estrogen-related receptor α, nuclear respiratory factor 1, and mitochondrial transcription factor A in hearts. Moreover, puerarin administration regulated the expression of metabolic genes in AAC-treated OVX rats. Hypertrophic changes could be induced in neonatal rat cardiomyocytes (NRCM) in vitro by treatment with angiotensin II (Ang II, 1 µM), which was attenuated by co-treatemnt with puerarin (100 µM). We further showed that puerarin decreased Ang II-induced accumulation of non-esterified fatty acids (NEFAs) and deletion of ATP, attenuated the Ang II-induced dissipation of the mitochondrial membrane potential, and improved the mitochondrial dysfunction in NRCM. Furthermore, addition of PPARα antagonist GW6471 (10 µM) partially abolished the anti-hypertrophic effects and metabolic effects of puerarin in NRCM. In conclusion, puerarin prevents cardiac hypertrophy in AAC-treated OVX rats through activation of PPARα/PGC-1 pathway and regulation of energy metabolism remodeling. This may provide a new approach to prevent the development of heart failure in postmenopausal women.


Assuntos
Cardiomegalia/prevenção & controle , Cardiotônicos/uso terapêutico , Isoflavonas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Aorta Abdominal/patologia , Cardiomegalia/etiologia , Cardiomegalia/patologia , Constrição Patológica/complicações , Metabolismo Energético/efeitos dos fármacos , Feminino , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Ovariectomia , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Sprague-Dawley
7.
Mol Cell Biochem ; 476(2): 797-807, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33095380

RESUMO

Endothelial progenitor cell (EPC) transplantation has shown advantages in the treatment of myocardial infarction (MI) in animal models and clinical trials through mechanisms of direct intercellular contacts, autocrine, and paracrine. However, the effects of EPC transplantation for MI treatment remain controversial and the underlying mechanisms have not been fully elucidated. Here, we explored the role of Rab27a in the therapeutic potential of EPC transplantation in MI. We found that Rab27a knockout impaired the viability, and reduced the proliferation and tube formation function of ECPs. The recovery of cardiac function and improvement of ventricular remodeling from EPCs transplantation were significantly damaged by Rab27a deletion in vivo. Rab27a deletion inhibited the protein expression of phosphoinositide 3-kinase (PI3K) and cyclin D1 and the phosphorylation levels of Akt and FoxO3a. Therefore, Rab27a knockout suppressed the PI3K-Akt-FoxO3a/cyclin D1 signaling pathway. Furthermore, Rab27a ablation dramatically reduced exosome release in EPCs. These results demonstrated that Rab27a plays an essential role in EPC functions. The elucidation of this mechanism provides novel insights into EPC transplantation as a promising treatment for post-MI injuries.


Assuntos
Células da Medula Óssea/patologia , Células Progenitoras Endoteliais/transplante , Deleção de Genes , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos , Proteínas rab27 de Ligação ao GTP/deficiência , Animais , Células da Medula Óssea/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Progenitoras Endoteliais/patologia , Exossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Remodelação Ventricular , Proteínas rab27 de Ligação ao GTP/genética
8.
Cell Tissue Res ; 382(3): 509-518, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32852610

RESUMO

Phenotype transition of vascular smooth muscle cells (VSMCs) is implicated in vascular diseases. Angiotensin-converting enzyme 2 (ACE2) is a perspective cardiovascular target due to its ability of converting angiotensin (Ang II) to Ang (1-7). Our group recently showed that ACE2 can regulate the function of endothelial progenitor cell-derived exosomes (EPC-EXs). Here, we investigate whether ACE2 could affect the role of EPC-EXs on phenotype transition of VSMCs. After co-incubation with EXs released from EPC overexpressed ACE2 (EPC-EXsACE2), the ACE2 level and Ang II/Ang (1-7), proliferation/migration, phenotype gene, cytokine and NF-κB level on VSMCs were assessed. To determine the EX uptake route, VSMCs were pretreated with inhibitors. We found that (1) EPC-EXs and EPC-EXsACE2 were uptaken by VSMCs dominantly through caveolin-dependent endocytosis. (2) EPC-EXsACE2 remarkably increased the ACE2 level and decreased Ang II/Ang (1-7) in VSMCs activated by Ang II, whereas EPC-EXsACE2 pretreated by proteinase A blocked this effect. (3) EPC-EXsACE2 had better effects than EPC-EXs on reducing proliferation/migration activities and cytokine (MCP-1, TNF-α) secretion of Ang II-activated VSMCs. (4) EPC-EXs attenuated Ang II-induced VSMC synthetic phenotype change as evidenced by upregulated expressions of calponin and a-SMA and downregulated expressions of CRBP-1 and MYH10, associated with a decreased NF-κB level. EPC-EXsACE2 augmented these effects, which were attenuated by ACE2 inhibitor (DX600). In conclusion, EPC-EXsACE2 reduced Ang II-induced VSMC phenotype change by conveying functional ACE2 to downregulate the activated NF-κB pathway.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Células Progenitoras Endoteliais/metabolismo , Exossomos/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Fenótipo , Transfecção
9.
Cardiovasc Drugs Ther ; 34(4): 463-473, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32394178

RESUMO

PURPOSE: Berberine was reported to exert beneficial effects on cardiac hypertrophy. However, its cellular and molecular mechanisms still remained unclear. METHODS: Cardiac hypertrophy was induced in male Sprague-Dawley (SD) rats by transverse aorta constriction (TAC), with or without 6-week treatment of berberine. Echocardiography was performed to evaluate cardiac function. Rats were then sacrificed for histological assay, with detection for proteins and mRNA. H9c2 cells were pretreated with berberine of different concentrations (0, 1 µM, and 10 µM), followed by treatment with 2 µM norepinephrine (NE). Cells of different groups were measured for cell surface area, with mRNA detected by qRT-PCR and proteins by western blot. RESULTS: Compared with the sham group, rats of the TAC group showed significantly increased cardiac hypertrophy and fibrosis, which could be ameliorated by treatment with berberine. Western blot showed that mammalian target of rapamycin (mTOR) signaling-related protein expressions, including phospho-mTOR, phospho-4EBP1, and phospho-p70 S6K (Thr389), but not phospho-p70 S6K (Ser371), were significantly increased in the TAC group, which were inhibited by berberine treatment. H9c2 cells were treated with NE to induce hypertrophy with increased cell surface area and mRNA expressions of anp and bnp. Berberine of 10 µM, but not 1 µM, significantly ameliorated NE-induced hypertrophy and inhibited protein expressions of mTOR signaling pathway similar to those in the rat model. CONCLUSIONS: Berberine can exert cardioprotective effects on both pressure-overloaded cardiac hypertrophy and failure in vivo and NE-induced hypertrophy in vitro. Our results suggest berberine could be a potential treatment for patients with cardiac hypertrophy and failure.


Assuntos
Berberina/farmacologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fator Natriurético Atrial/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/metabolismo , Fosforilação , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
Clin Rheumatol ; 39(7): 2025-2029, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32406001

RESUMO

The coronavirus disease 2019 (COVID-19), the result of an infection with the new virus, SARS-CoV-2, is rapidly spreading worldwide. It is largely unknown whether the occurrence of COVID-19 in patients with rheumatic immune diseases has some specific manifestations, or makes them more prone to rapidly progress into severe COVID-19. In this case report, we describe the clinical features of 5 rheumatic immune disease patients with the concomitant presence of COVID-19. Amongst these patients, 4 had rheumatoid arthritis (RA) and 1 had systemic sclerosis (SSc). Two patients had a history of close contact with a COVID-19 patient. The age of the patients ranged between 51 and 79 years. Fever (80%), cough (80%), dyspnea (40%), and fatigue (20%) were the most common presenting symptoms. Laboratory investigations revealed leukopenia and lymphopenia in 2 patients. In all the patients, chest computerized tomography (CT) revealed patchy ground glass opacities in the lungs. During the hospital stay, the condition of two patients remained the same (i.e., mild COVID-19), two patients progressed to the severe COVID-19, and one patient worsened to the critically ill COVID-19. These patients were treated with antiviral agents for COVID-19, antibiotics for secondary bacterial infections, and immunomodulatory agents for rheumatic immune diseases. All the patients responded well, were cured of COVID-19, and subsequently discharged.


Assuntos
Antivirais/uso terapêutico , Artrite Reumatoide , Infecções por Coronavirus , Imunomodulação , Pandemias , Pneumonia Viral , Escleroderma Sistêmico , Idoso , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/terapia , Betacoronavirus/isolamento & purificação , Contagem de Células Sanguíneas/métodos , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Estado Terminal/terapia , Progressão da Doença , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/terapia , SARS-CoV-2 , Escleroderma Sistêmico/diagnóstico , Escleroderma Sistêmico/epidemiologia , Escleroderma Sistêmico/terapia , Avaliação de Sintomas/métodos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
11.
J Pharmacol Exp Ther ; 366(3): 458-469, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29945930

RESUMO

Previous evidence has suggested that puerarin may attenuate cardiac hypertrophy; however, the potential mechanisms have not been determined. Moreover, the use of puerarin is limited by severe adverse events, including intravascular hemolysis. This study used a rat model of abdominal aortic constriction (AAC)-induced cardiac hypertrophy to evaluate the potential mechanisms underlying the attenuating efficacy of puerarin on cardiac hypertrophy, as well as the metabolic mechanisms of puerarin involved. We confirmed that puerarin (50 mg/kg per day) significantly attenuated cardiac hypertrophy, upregulated Nrf2, and decreased Keap1 in the myocardium. Moreover, puerarin significantly promoted Nrf2 nuclear accumulation in parallel with the upregulated downstream proteins, including heme oxygenase 1, glutathione transferase P1, and NAD(P)H:quinone oxidoreductase 1. Similar results were obtained in neonatal rat cardiomyocytes (NRCMs) treated with angiotensin II (Ang II; 1 µM) and puerarin (100 µM), whereas the silencing of Nrf2 abolished the antihypertrophic effects of puerarin. The mRNA and protein levels of UGT1A1 and UGT1A9, enzymes for puerarin metabolism, were significantly increased in the liver and heart tissues of AAC rats and Ang II-treated NRCMs. Interestingly, the silencing of Nrf2 attenuated the puerarin-induced upregulation of UGT1A1 and UGT1A9. The results of chromatin immunoprecipitation-quantitative polymerase chain reaction indicated that the binding of Nrf2 to the promoter region of Ugt1a1 or Ugt1a9 was significantly enhanced in puerarin-treated cardiomyocytes. These results suggest that Nrf2 is the key regulator of antihypertrophic effects and upregulation of the metabolic enzymes UGT1A1 and UGT1A9 of puerarin. The autoregulatory circuits between puerarin and Nrf2-induced UGT1A1/1A9 are beneficial to attenuate adverse effects and maintain the pharmacologic effects of puerarin.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Isoflavonas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Feminino , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
12.
Mol Med Rep ; 18(1): 1007-1014, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29845301

RESUMO

Resveratrol has been reported to inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia following arterial injury; however, the underlying mechanisms remain unclear. The present study was designed to investigate the effects of resveratrol on angiotensin II (AngII)­induced proliferation of A7r5 cells and explore the molecular mechanisms responsible for the observed effects. Resveratrol inhibited cell proliferation and migration, and decreased the AngII­induced protein expression of α­smooth muscle actin (α­SMA), proliferating cell nuclear antigen (PCNA) and cyclin­dependent kinase 4 (CDK4). Resveratrol inhibited AngII­induced activation of intracellular Ca2+/calmodulin­dependent protein kinase II (CaMKII) and histone deacetylases 4 (HDAC4), as well as blocking AngII­induced cell cycle progression from the G0/G1 to S­phase. In vivo, 4­weeks of resveratrol treatment decreased the neointima area and the neointima/media area ratio in rats following carotid balloon injury. Resveratrol also inhibited the protein expression of total and phosphorylated CaMKII and HDAC4 in the injured arteries. In conclusion, the present study demonstrated that resveratrol attenuated AngII­induced cell proliferation and neointimal hyperplasia by inhibiting the CaMKII­HDAC4 signaling pathway. These findings suggest that resveratrol may potentially prevent arterial restenosis.


Assuntos
Angiotensina II/efeitos adversos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ciclo Celular/efeitos dos fármacos , Histona Desacetilases/metabolismo , Neointima/enzimologia , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Angiotensina II/farmacologia , Animais , Linhagem Celular , Hiperplasia , Masculino , Neointima/patologia , Ratos , Ratos Sprague-Dawley , Resveratrol
13.
Cell Death Dis ; 9(3): 357, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500342

RESUMO

Stem cell therapy can be used to repair and regenerate damaged hearts tissue; nevertheless, the low survival rate of transplanted cells limits their therapeutic efficacy. Recently, it has been proposed that exosomes regulate multiple cellular processes by mediating cell survival and communication among cells. The following study investigates whether injured cardiomyocytes-derived exosomes (cardiac exosomes) affect the survival of transplanted bone marrow mesenchymal stem cells (BMSCs) in infarcted heart. To mimic the harsh microenvironment in infarcted heart that the cardiomyocytes or transplanted BMSCs encounter in vivo, cardiomyocytes conditioned medium and cardiac exosomes collected from H2O2-treated cardiomyocytes culture medium were cultured with BMSCs under oxidative stress in vitro. Cardiomyocytes conditioned medium and cardiac exosomes significantly accelerated the injury of BMSCs induced by H2O2; increased cleaved caspase-3/caspase-3 and apoptotic percentage, and decreased the ratio of Bcl-2/Bax and cell viability in those cells. Next, we explored the role of cardiac exosomes in the survival of transplanted BMSCs in vivo by constructing a Rab27a knockout (KO) mice model by a transcription activator-like effector nuclease (TALEN) genome-editing technique; Rab27a is a family of GTPases, which has critical role in secretion of exosomes. Male mouse GFP-modified BMSCs were implanted into the viable myocardium bordering the infarction in Rab27a KO and wild-type female mice. The obtained results showed that the transplanted BMSCs survival in infarcted heart was increased in Rab27a KO mice by the higher level of Y-chromosome Sry DNA, GFP mRNA, and the GFP fluorescence signal intensity. To sum up, these findings revealed that the injured cardiomyocytes-derived exosomes accelerate transplanted BMSCs injury in infarcted heart, thus highlighting a new mechanism underlying the survival of transplanted cells after myocardial infarction.


Assuntos
Exossomos/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Animais , Apoptose , Sobrevivência Celular , Células Cultivadas , Feminino , Técnicas de Inativação de Genes , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/induzido quimicamente , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Proteínas rab27 de Ligação ao GTP/genética
14.
Sci Rep ; 6: 24679, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27094208

RESUMO

Accurate analysis of specific microvesicles (MVs) from biofluids is critical and challenging. Here we described novel methods to purify and detect MVs shed from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads with fluorescence quantum dots (Q-dots) coupled nanoparticle tracking analysis (NTA). In the in vitro screening systems, we demonstrated that 1) anti-CD105 (EC marker) and anti-CD34 (EPC marker) conjugated-microbeads had the highest sensitivity and specificity for isolating respective MVs, which were confirmed with negative controls, CD41 and CD235a; 2) anti-CD144 (EC marker) and anti-KDR (EPC marker) conjugated-Q-dots exhibited the best sensitivity and specificity for their respective MV NTA detection, which were confirmed with positive control, anti-Annexin V (MV universal marker). The methods were further validated by their ability to efficiently recover the known amount of EC-MVs and EPC-MVs from particle-depleted plasma, and to detect the dynamical changes of plasma MVs in ischemic stroke patients, as compared with traditional flow cytometry. These novel methods provide ideal approaches for functional analysis and biomarker discovery of ECs- and EPCs- derived MVs.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Células Progenitoras Endoteliais/metabolismo , Microesferas , Nanopartículas , Pontos Quânticos , Biomarcadores , Micropartículas Derivadas de Células/ultraestrutura , Células Cultivadas , Citometria de Fluxo , Humanos , Nanopartículas/ultraestrutura
15.
Am J Physiol Endocrinol Metab ; 310(10): E828-37, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26956185

RESUMO

Our previous study showed that circulating microvesicles (cMVs) of diabetic mice have negative effects on the function of endothelial progenitor cells (EPCs). Whether this is true in diabetic patients deserves further study. In this study, the effects of cMVs and EPC-derived MVs (EPC-MVs) on EPC migration, apoptosis, and reactive oxygen species (ROS) production in healthy controls, well-controlled, and uncontrolled diabetic patients were investigated. The levels of miR-126 and vascular endothelial growth factor receptor 2 (VEGFR2) in cMVs, EPC-MVs, and/or EPCs were analyzed. Moreover, miR-126 inhibitor or mimic was applied to EPCs to modulate the miR-126 level in EPC-MVs. We found the following: 1) the circulating EPC level was reduced but the circulating EPC-MV level increased in uncontrolled diabetic patients; 2) the cMVs and EPC-MVs of healthy controls had beneficial effects on EPCs (migration, apoptosis, ROS), whereas the effects were reversely changed in the cMVs and EPC-MVs of uncontrolled diabetic patients; and 3) the cMVs and EPC-MVs of uncontrolled diabetic patients carried less miR-126 and had downregulated VEGFR2 expression in EPCs. Manipulating the miR-126 level in EPC-MVs with inhibitor or mimic changed their function. The effects of cMVs and EPC-MVs are compromised in diabetes due to the reduction of their carried miR-126, which might provide a therapy target for diabetic vascular complications.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Progenitoras Endoteliais/citologia , MicroRNAs/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Apoptose , Estudos de Casos e Controles , Movimento Celular , Regulação para Baixo , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
16.
Acta Pharmacol Sin ; 36(4): 440-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25832424

RESUMO

AIM: The receptor for advanced glycation end-products (RAGE) plays an important role in development of atherosclerosis, and C-reactive protein (CRP) has been found to stimulate its expression in endothelial cells. In this study we investigated how CRP regulated the expression of RAGE in human coronary artery endothelial cells (HCAECs). METHODS: HCAECs were treated in vitro with CRP (50 µg/mL) in combination with a variety of inhibitors. ROS generation was determined by immunocytochemistry and flow cytometry. The RAGE expression and phosphorylation of relevant signaling proteins were measured using Western blot analyses. RESULTS: CRP stimulated the expression of RAGE in the cells, accompanied by markedly increased ROS generation, phosphorylation of ERK1/2 and NF-κB p65, as well as translocation of NF-κB p65 to the nuclei. CRP also stimulated phosphorylation of JNK and p38 MAPK. Pretreatment of the cells with the ROS scavenger N-acetyl-L-cysteine, ERK inhibitor PD98059 or NF-κB inhibitor PDTC blocked CRP-stimulated RAGE expression, but pretreatment with the NADPH oxidase inhibitor DPI, JNK inhibitor SP600125 or p38 MAPK inhibitor SB203580 did not significantly alter CRP-stimulated RAGE expression. CONCLUSION: CRP stimulates RAGE expression in HCAECs in vitro via ROS generation and activation of the ERK/NF-κB signaling pathway.


Assuntos
Proteína C-Reativa/imunologia , Células Endoteliais/imunologia , Sistema de Sinalização das MAP Quinases , NF-kappa B/imunologia , Espécies Reativas de Oxigênio/imunologia , Receptores Imunológicos/imunologia , Células Cultivadas , Vasos Coronários/citologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/imunologia , Células Endoteliais/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/análise , NF-kappa B/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/análise , Transdução de Sinais/efeitos dos fármacos
17.
Pediatr Res ; 77(2): 376-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25406901

RESUMO

BACKGROUND: Juvenile-onset systemic lupus erythematosus (JSLE) has a higher mortality risk compared to adult-onset SLE. We compared the diagnostic value of anti-cmDNA antibodies with that of antinucleosome antibodies (AnuA), anti-Sm antibodies, and anti-dsDNA antibodies and human B lymphocyte Raji cells with that of human promyelocytic leukemia HL60 cells as substrates in an indirect immunofluorescence assay to detect anti-cmDNA antibodies in JSLE patients. METHODS: We recruited 92 JSLE patients and 71 patients with other juvenile-onset rheumatic diseases. Anti-cmDNA antibodies and antinuclear antibodies (ANA) were detected in patient sera using indirect immunofluorescence assays. Anti-dsDNA antibodies were detected by combining ELISA and indirect immunofluorescence. Anti-Sm antibodies were detected by double immunodiffusion assay and immunoblotting, while AnuA were detected by ELISA. RESULTS: The JSLE group had a significantly higher percentage of patients positive for anti-cmDNA compared to patients with other rheumatoid diseases. Using one antibody for diagnosis, anti-cm DNA antibodies had the highest accuracy at 84.0%; using two antibodies, the combination of anti-cm DNA and anti-dsDNA antibodies had 90.8% accuracy. Raji cells used as substrate demonstrated a stronger intensity of fluorescent patterns compared to HL60 cells. CONCLUSION: The high sensitivity, specificity, and accuracy of detection of anti-cmDNA antibodies make it a valuable diagnostic tool for JSLE.


Assuntos
Anticorpos Antinucleares , Técnica Indireta de Fluorescência para Anticorpo/métodos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/imunologia , Adolescente , Anticorpos Antinucleares/sangue , Linfócitos B , Membrana Celular/imunologia , Criança , China , Ensaio de Imunoadsorção Enzimática , Feminino , Células HL-60 , Humanos , Masculino , Estudos Prospectivos , Sensibilidade e Especificidade , Estatísticas não Paramétricas
18.
Int J Cardiol ; 177(3): 764-70, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25465825

RESUMO

BACKGROUND: Concerns regarding the use of selected bone marrow stem cells (BMSCs) in the field of cardiac repair after acute ischemic events have been raised. The current meta-analysis aimed to assess the efficacy and safety of selected BMSC transplantation in patients with acute myocardial infarction (AMI) based on published randomized controlled trials (RCTs). METHODS: A systematic literature search of PubMed, Ovid LWW, BIOSIS Previews, and the Cochrane library from 1990 to 2014 was conducted. Results from RCTs involving subjects with AMI receiving selected BMSC therapy and followed up for at least 6 months were pooled. RESULTS: Eight trials with a total of 262 participants were included. Data were analyzed using a random effects model. Overall, selected BMSC therapy improved left ventricular ejection fraction (LVEF) by 3.17% (95% confidence interval [CI] 0.57-5.76, P=0.02), compared with the controls. There were trends toward reduced left ventricular end-systolic volume (LVESV) and fewer major adverse cardiac events (MACEs). Subgroup analysis revealed a significant difference in LVEF in favor of selected BMSC therapy with bone marrow mesenchymal stem cells (BMMSCs) as the cell type. CONCLUSIONS: Transplantation of selected BMSCs for patients with AMI is safe and induces a significant increase in LVEF with a limited impact on left ventricular remodeling.


Assuntos
Transplante de Medula Óssea/métodos , Infarto do Miocárdio/terapia , Função Ventricular Esquerda/fisiologia , Ensaios Clínicos como Assunto/métodos , Humanos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/fisiopatologia , Volume Sistólico/fisiologia , Resultado do Tratamento
19.
PLoS One ; 9(4): e94382, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24728149

RESUMO

Cardiac hypertrophy is characterized by thickening myocardium and decreasing in heart chamber volume in response to mechanical or pathological stress, but the underlying molecular mechanisms remain to be defined. This study investigated altered miRNA expression and autophagic activity in pathogenesis of cardiac hypertrophy. A rat model of myocardial hypertrophy was used and confirmed by heart morphology, induction of cardiomyocyte autophagy, altered expression of autophagy-related ATG9A, LC3 II/I and p62 proteins, and decrease in miR-34a expression. The in vitro data showed that in hypertrophic cardiomyocytes induced by Ang II, miR-34a expression was downregulated, whereas ATG9A expression was up-regulated. Moreover, miR-34a was able to bind to ATG9A 3'-UTR, but not to the mutated 3'-UTR and inhibited ATG9A protein expression and autophagic activity. The latter was evaluated by autophagy-related LC3 II/I and p62 levels, TEM, and flow cytometry in rat cardiomyocytes. In addition, ATG9A expression induced either by treatment of rat cardiomyocytes with Ang II or ATG9A cDNA transfection upregulated autophagic activity and cardiomyocyte hypertrophy in both morphology and expression of hypertrophy-related genes (i.e., ANP and ß-MHC), whereas knockdown of ATG9A expression downregulated autophagic activity and cardiomyocyte hypertrophy. However, miR-34a antagonized Ang II-stimulated myocardial hypertrophy, whereas inhibition of miR-34a expression aggravated Ang II-stimulated myocardial hypertrophy (such as cardiomyocyte hypertrophy-related ANP and ß-MHC expression and cardiomyocyte morphology). This study indicates that miR-34a plays a role in regulation of Ang II-induced cardiomyocyte hypertrophy by inhibition of ATG9A expression and autophagic activity.


Assuntos
Angiotensina II/farmacologia , Autofagia/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Proteínas de Membrana/genética , MicroRNAs/metabolismo , Miocárdio/patologia , Animais , Autofagia/efeitos dos fármacos , Sequência de Bases , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Dados de Sequência Molecular , Miocárdio/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Sístole/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Vacúolos/ultraestrutura
20.
Oxid Med Cell Longev ; 2013: 572729, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24288585

RESUMO

Oxidative stress-induced endothelial dysfunction plays a key role in ischemia/reperfusion injury. Recent evidence indicates that endothelial progenitor cell-derived microvesicles (EPC-MVs) can promote angiogenesis of endothelial cells (ECs). Here, we investigated the potential effects of EPC-MVs on hypoxia/reoxygenation (H/R) injury in human brain microvascular ECs (hb-ECs). MVs were prepared from EPCs cultured in a serum deprivation (SD) medium (starving stress, sEPC-MVs) or SD medium containing tumor necrosis factor- α (TNFα) (apoptotic stress, aEPC-MVs). H/R injury model of hb-ECs was produced by 6 hr hypoxia (1% O2) and 24 hr reoxygenation. The H/R hb-ECs were co-cultured with EPC-MVs. Results showed that (1) H/R hb-ECs were dysfunctional and coupled with increased apoptosis and ROS overproduction; (2) under two different conditions, EPCs displayed remarkable difference in caspase 3 and miR126 expression, which were carried by the corresponsive EPC-MVs; (3) functionally, sEPC-MVs had beneficial effects on H/R hb-ECs, whereas aEPC-MVs had detrimental effects; (4) the diverse effects of sEPC-MVs and aEPC-MVs were associated with the changes in miR126 and eNOS expression and were abolished by PI3K inhibitor. In conclusion, sEPCs-MVs and aEPC-MVs are functionally different on hb-EC apoptosis and dysfunction via their carried RNAs associated with ROS production and PI3K/eNOS/NO pathway.


Assuntos
Apoptose/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/fisiopatologia , Oxigênio/farmacologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Encéfalo/patologia , Caspase 3/metabolismo , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura Livres de Soro , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Microvasos/patologia , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...