Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0267623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37943512

RESUMO

IMPORTANCE: Spike-receptor interaction is a critical determinant for the host range of coronaviruses. In this study, we investigated the SARS-CoV-2 WHU01 strain and five WHO-designated SARS-CoV-2 variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and the early Omicron variant, for their Spike interactions with ACE2 proteins of 18 animal species. First, the receptor-binding domains (RBDs) of Alpha, Beta, Gamma, and Omicron were found to display progressive gain of affinity to mouse ACE2. More interestingly, these RBDs were also found with progressive loss of affinities to multiple ACE2 orthologs. The Omicron RBD showed decreased or complete loss of affinity to eight tested animal ACE2 orthologs, including that of some livestock animals (horse, donkey, and pig), pet animals (dog and cat), and wild animals (pangolin, American pika, and Rhinolophus sinicus bat). These findings shed light on potential host range shift of SARS-CoV-2 VOCs, especially that of the Omicron variant.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Doenças do Gato , Quirópteros , Doenças do Cão , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Gatos , Cães , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais Selvagens/virologia , Doenças do Gato/virologia , Quirópteros/virologia , COVID-19/metabolismo , Doenças do Cão/virologia , Cavalos/virologia , Mutação , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Suínos/virologia , Glicoproteína da Espícula de Coronavírus/genética
2.
Microbiol Spectr ; 11(4): e0110023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395664

RESUMO

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been causing increasingly serious drug resistance problem, development of broadly effective and hard-to-escape anti-SARS-CoV-2 agents is an urgent need. Here, we describe further development and characterization of two SARS-CoV-2 receptor decoy proteins, ACE2-Ig-95 and ACE2-Ig-105/106. We found that both proteins had potent and robust in vitro neutralization activities against diverse SARS-CoV-2 variants, including BQ.1 and XBB.1, that are resistant to most clinically used monoclonal antibodies. In a stringent lethal SARS-CoV-2 infection mouse model, both proteins lowered the lung viral load by up to ~1,000-fold, prevented the emergence of clinical signs in >75% animals, and increased the animal survival rate from 0% (untreated) to >87.5% (treated). These results demonstrate that both proteins are good drug candidates for protecting animals from severe COVID-19. In a head-to-head comparison of these two proteins with five previously described ACE2-Ig constructs, we found that two constructs, each carrying five surface mutations in the ACE2 region, had partial loss of neutralization potency against three SARS-CoV-2 variants. These data suggest that extensively mutating ACE2 residues near the receptor binding domain (RBD)-binding interface should be avoided or performed with extra caution. Furthermore, we found that both ACE2-Ig-95 and ACE2-Ig-105/106 could be produced to the level of grams per liter, demonstrating the developability of them as biologic drug candidates. Stress condition stability testing of them further suggests that more studies are required in the future to improve the stability of these proteins. These studies provide useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses. IMPORTANCE Engineering soluble ACE2 proteins that function as a receptor decoy to block SARS-CoV-2 infection is a very attractive approach to creating broadly effective and hard-to-escape anti-SARS-CoV-2 agents. This article describes development of two antibody-like soluble ACE2 proteins that broadly block diverse SARS-CoV-2 variants, including Omicron. In a stringent COVID-19 mouse model, both proteins successfully protected >87.5% animals from lethal SARS-CoV-2 infection. In addition, a head-to-head comparison of the two constructs developed in this study with five previously described ACE2 decoy constructs was performed here. Two previously described constructs with relatively more ACE2 surface mutations were found with less robust neutralization activities against diverse SARS-CoV-2 variants. Furthermore, the developability of the two proteins as biologic drug candidates was also assessed here. This study provides two broad anti-SARS-CoV-2 drug candidates and useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses.


Assuntos
Produtos Biológicos , COVID-19 , Animais , Camundongos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Modelos Animais de Doenças
3.
Front Cardiovasc Med ; 10: 1118002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742069

RESUMO

Cardiovascular disease, particularly coronary artery disease, is the leading cause of death in humans worldwide. Coronary heart disease caused by chemotherapy affects the prognosis and survival of patients with tumors. The most effective chemotherapeutic drugs for cancer include proteasome inhibitors, tyrosine kinase inhibitors, immune checkpoint inhibitors, 5-fluorouracil, and anthracyclines. Animal models and clinical trials have consistently shown that chemotherapy is closely associated with coronary events and can cause serious adverse cardiovascular events. Adverse cardiovascular events after chemotherapy can affect the clinical outcome, treatment, and prognosis of patients with tumors. In recent years, with the development of new chemotherapeutic drugs, new discoveries have been made about the effects of drugs used for chemotherapy on cardiovascular disease and its related mechanisms, such as inflammation. This review article summarizes the effects of chemotherapeutic drugs on coronary artery disease and its related mechanisms to guide efforts in reducing cardiovascular adverse events during tumor chemotherapy, preventing the development of coronary heart disease, and designing new prevention and treatment strategies for cardiotoxicity caused by clinical tumor chemotherapy.

4.
Photochem Photobiol ; 97(2): 377-384, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32959424

RESUMO

In vitro experiments confirmed that antibacterial photodynamic treatment (aPDT) inactivates periodontal pathogens. However, more effective sterilization is needed in the complex oral environment. This study tested whether dihydroartemisinin (DHA) enhanced the photokilling effect of aPDT on Porphyromonas gingivalis (P. gingivalis) in planktonic and biofilm states. aPDT combining toluidine blue O (TBO) with 630 nm red light was performed on bacterial suspensions and biofilms in vitro with different final concentrations of DHA (10, 20 and 40 µg mL-1 ). The sensitization mechanism was preliminarily investigated by uptake experiments. The above experiments were repeated with different incubation times (30, 60, 120 s). Porphyromonas gingivalis biofilms exhibited significantly higher resistance to aPDT than P. gingivalis in suspension under the same experimental parameters. DHA alone had no cytotoxic effect on P. gingivalis with or without light irradiation. In either bacterial suspensions or biofilms, DHA concentration-dependently enhanced the photokilling effect of aPDT and increased TBO uptake by P. gingivalis. Prolonged incubation time enhanced the photokilling efficiency of aPDT until cellular TBO uptake reached saturation. DHA can enhance aPDT activity against P. gingivalis in planktonic and biofilm states. DHA also accelerated TBO uptake, reducing incubation time.


Assuntos
Antibacterianos/farmacologia , Artemisininas/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Cloreto de Tolônio/farmacologia , Biofilmes/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Fármacos Fotossensibilizantes/metabolismo , Porphyromonas gingivalis/metabolismo , Cloreto de Tolônio/metabolismo
5.
Cell Mol Gastroenterol Hepatol ; 8(1): 95-110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30926581

RESUMO

BACKGROUND & AIMS: The lysosome is an acidic organelle that is important for maintaining cellular and metabolic homeostasis in hepatocytes. Lysosomal dysfunction and chronic inflammation coexist, and both contribute to obesity-associated hepatic insulin resistance. However, in the context of obesity, the interplay between inflammatory signals and hepatic lysosomal function remains largely unknown. Inducible nitric oxide synthase (iNOS) is a hallmark for inflammation, and is activated in obesity. The aim of this study is to understand the molecular link between iNOS-mediated lysosomal nitric oxide (NO) production, hepatic lysosomal function, and autophagy in the context of obesity-associated insulin resistance. METHODS: The role of iNOS in hepatic autophagy, as related to insulin and glucose homeostasis were studied in mice with diet-induced obesity (DIO). The effects and mechanisms of iNOS-mediated lysosomal NO production on lysosomal function and hepatic autophagy were studied in primary hepatocytes as well as in a mouse model of DIO. RESULTS: We demonstrate that obesity promotes iNOS localization to the lysosome and decreases levels of lysosomal arginine, resulting in an accumulation of NO in hepatic lysosomes. This lysosomal NO production is attenuated by treatment with a NO scavenger, while co-overexpression of mTOR and a lysosomal arginine transporter (SLC38A9) enhances lysosomal NO production and suppresses autophagy. In addition, we show that deletion of iNOS ameliorates lysosomal nitrosative stress in the livers of DIO mice, promotes lysosomal biogenesis by activating transcription factor EB (TFEB), and enhances lysosomal function and autophagy. Lastly, deletion of iNOS in mice with DIO improves hepatic insulin sensitivity, which is diminished by suppression of TFEB or autophagy related 7 (Atg7). CONCLUSIONS: Our studies suggest that lysosomal iNOS-mediated NO signaling disrupts hepatic lysosomal function, contributing to obesity-associated defective hepatic autophagy and insulin resistance.


Assuntos
Hepatócitos/citologia , Lisossomos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Obesidade/metabolismo , Animais , Arginina/metabolismo , Autofagia , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Hepatócitos/metabolismo , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Estresse Nitrosativo , Obesidade/induzido quimicamente , Obesidade/genética
6.
Mol Ther ; 26(5): 1277-1286, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29567311

RESUMO

RNA switches that modulate gene expression with small molecules have a number of scientific and clinical applications. Here, we describe a novel class of small regulatory on switches based on the ability of a ligand-bound aptamer to promote stem formation between a microRNA target sequence (miR-T) and a complementary competing strand. Two on switch architectures employing this basic concept were evaluated, differing in the location of a tetracycline aptamer and the region of a miR-21 target sequence (miR-21-T) masked by its competing strand. Further optimizations of miR-21-T and its competing strand resulted in tetracycline-regulated on switches that induced luciferase expression by 19-fold in HeLa cells. A similar switch design based on miR-122-T afforded 7-fold regulation when placed in tandem, indicating that this approach can be extended to additional miR-T. Optimized on switches introduced into adeno-associated virus (AAV) vectors afforded 10-fold regulation of two antiviral proteins in AAV-transduced cells. Our data demonstrate that small-molecule-induced occlusion of a miR-T can be used to conditionally regulate gene expression in mammalian cells and suggest that regulatory switches built on this principle can be used to dose expression of an AAV transgene.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Aptâmeros de Nucleotídeos , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Dependovirus/genética , Vetores Genéticos/genética , Humanos , Ligantes , Riboswitch , Técnica de Seleção de Aptâmeros , Transgenes
7.
PLoS One ; 9(1): e86083, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465884

RESUMO

The importance of the fourth variable (V4) region of the human immunodeficiency virus 1 (HIV-1) envelope glycoprotein (Env) in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS). In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS), greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain) resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.


Assuntos
Aminoácidos/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Internalização do Vírus , Sequência de Aminoácidos , Substituição de Aminoácidos , Biologia Computacional , Sequência Conservada , Evolução Molecular , Glicosilação , Células HEK293 , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estrutura Terciária de Proteína , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade , Tropismo Viral
8.
Biochem Biophys Res Commun ; 391(4): 1780-4, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20045672

RESUMO

To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.


Assuntos
Proteína gp160 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Fusão de Membrana , Receptores de HIV/metabolismo , Trombina/metabolismo , Internalização do Vírus , Fusão Celular/métodos , Linhagem Celular , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Humanos , Luciferases de Renilla/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...