Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(5): e15979, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215810

RESUMO

Particles are ubiquitous and abundant in natural waters and play a crucial role in the fate and bioavailability of organic pollution. In the present study, natural mineral (kaolinites, KL), organic (humic/fulvic acid, HA/FA) and their composite particles were further separated into particles fractions (PFs, >1 µm) and colloidal fractions (CFs, 1 kDa-1 µm) by cross-flow ultrafiltration (CFUF). This research demonstrated the role of kaolinite-humic composite colloids on the adsorption of fluoroquinolone norfloxacin (NOR). The Freundlich model satisfactory described adsorption curves, showing strong affinity of NOR to CFs, with sorption capacity (KF) between 8975.50 and 16638.13 for NOR. The adsorption capacities of NOR decreased with the particle size increasing from CFs to PFs. In addition, composite CFs showed excellent adsorption capacity, which was mainly attributed to the larger specific surface area of composite CFs and electronegativity and numerous oxygen-containing functional groups on the surfaces of the complexes, and electrostatic attraction, hydrogen bond and cation exchange could dominate the NOR adsorption onto the composite CFs. The best pH value under adsorption condition of composite CFs varied from weakly acidic to neutral with the increase of load amount of humic and fulvic acids on the surface of inorganic particles. The adsorption decreased with higher cation strength, larger cation radius and higher cation valence, which depended on the surface charge of colloids and the molecular shape of NOR. These results provided insight into the interfacial behaviors of NOR on the surfaces of natural colloids and promoted the understanding of the migration and transport of antibiotics in environmental systems.

2.
Sci Total Environ ; 882: 163334, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061064

RESUMO

Antibiotic resistomes in leaf endophytes of vegetables threaten human health through the food chain. However, little is known about the ability of long-term manure fertilization to impact the deep selection of antibiotic resistance genes (ARGs) in leaf endophytes of vegetables planted in different types of soils. Here, by high-throughput quantitative PCR, we characterized the ARGs of leaf endophytes of Chinese cabbage (Brassica pekinensis (Lour.) Rupr.) grown in long-term (14 year) manure-amended acidic, neutral and calcareous soils. In total, 87 ARGs and 4 mobile genetic elements (MGEs) were detected in all the samples. Manure fertilization significantly increased the ARG numbers and normalized abundance in leaf endophytes, especially in acidic soil. Moreover, in acidic soil, manure application also led to a higher increase in the normalized abundance of opportunist and specialist ARGs, and more opportunist and specialist ARGs posed a high risk according to their risk ranks. Random forest analysis revealed that Proteobacteria and MGEs were the major drivers affecting the normalized abundance of opportunist and specialist ARGs in both acidic and neutral soils, respectively. In calcareous soil, Cyanobacteria and Actinobacteria were the most important contributors. Collectively, this study expands our knowledge about the deep selection of plant resistomes under long-term manure application.


Assuntos
Antibacterianos , Brassica , Humanos , Antibacterianos/análise , Genes Bacterianos , Esterco/análise , Endófitos , Solo , Verduras , Microbiologia do Solo
3.
Sci Total Environ ; 870: 161785, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36736399

RESUMO

Using high-throughput quantitative PCR and next generation sequencing, the impact of land application of raw and composted gentamicin fermentation waste (GFW) on antibiotic resistance genes (ARGs) in maize seeds was studied in a three-year field trial. The raw and composted GFW changed both the bacterial community composition and the ARGs diversity in the maize seeds compared to non-amended controls and chemical fertilizer. The abundance of ARGs after raw GFW amendment was significantly higher than other treatments because of a high abundance of aadA1, qacEdeltal and aph(2')-Id-02; probably induced by gentamicin selection pressure in maize tissues. Meanwhile, the potential host of these three ARGs, pathogenic bacteria Tenacibaculum, also increased significantly in maize seeds after the application of raw GFW. But our result proved that composting could weaken the risk posed by GFW. We further reveal that the key biotic driver for shaping the ARG profiles in maize seeds is bacterial community followed by heavy metal resistance genes, and ARGs are more likely located on bacterial chromosomes. Our findings provide new insight into ARGs dispersal mechanism in maize seeds after long-term GFW application, demonstrate the potential benefits of composting the GFW to reduce risks as well as the potential efficient management method to GFW.


Assuntos
Antibacterianos , Compostagem , Antibacterianos/farmacologia , Gentamicinas , Zea mays/genética , Genes Bacterianos , Fermentação , Esterco/análise , Resistência Microbiana a Medicamentos/genética , Bactérias/genética
5.
Chemosphere ; 300: 134529, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35395269

RESUMO

A meta-analysis of 94 published studies was conducted to explore the impacts of farmland application of antibiotic-contaminated manures on antibiotic concentrations and ARG abundances in manure-amended soil. Forty-nine antibiotics were reported, in which chlortetracycline, oxytetracycline, doxycycline, tetracycline, enrofloxacin, ciprofloxacin and norfloxacin were the most prevalent and had relatively high concentrations. The responses of ARG and mobile genetic element (MGE) abundances to farmland application of antibiotic-contaminated manures varied considerably under different management strategies and environmental settings. On average, compared to unamended treatments, farmland application of antibiotic-contaminated manures significantly increased the total ARG and MGE abundances by 591% and 351%, respectively (P < 0.05). Of all the included ARG classes, the largest increase was found for sulfonamide resistance genes (1121%), followed by aminoglycoside (852%) and tetracycline (763%) resistance genes. Correlation analysis suggested that soil organic carbon (SOC) was significantly negatively correlated with antibiotic concentrations in manured soil (P < 0.05) due to the formation of covalent bonds and nonextractable residues. Soil silt content was significantly positively correlated with antibiotic concentration (P < 0.05), which was attributed to greater sorption capacities. The ARG abundances were significantly positively correlated with soil silt content, antibiotic concentrations, mean annual temperature, SOC, MGEs and soil pH (P < 0.05), suggesting that changes in these factors may shape the ARG profiles. Collectively, these findings advanced our understanding of the occurrence of antibiotics and ARGs in manure-amended soil and potential factors affecting them and will contribute to better management of these contaminants in future agricultural production.


Assuntos
Esterco , Solo , Antibacterianos/farmacologia , Carbono , Resistência Microbiana a Medicamentos/genética , Fazendas , Genes Bacterianos , Esterco/análise , Solo/química , Microbiologia do Solo , Tetraciclinas
6.
Molecules ; 27(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056787

RESUMO

Here, we investigated the impact of different turning frequency (TF) on dynamic changes of N fractions, NH3 emission and bacterial/archaeal community during chicken manure composting. Compared to higher TF (i.e., turning every 1 or 3 days in CMS1 or CMS3 treatments, respectively), lower TF (i.e., turning every 5 or 7 days in CMS5 or CMS7 treatments, respectively) decreased NH3 emission by 11.42-18.95%. Compared with CMS1, CMS3 and CMS7 treatments, the total nitrogen loss of CMS5 decreased by 38.03%, 17.06% and 24.76%, respectively. Ammonia oxidizing bacterial/archaeal (AOB/AOA) communities analysis revealed that the relative abundance of Nitrosospira and Nitrososphaera was higher in lower TF treatment during the thermophilic and cooling stages, which could contribute to the reduction of NH3 emission. Thus, different TF had a great influence on NH3 emission and microbial community during composting. It is practically feasible to increase the abundance of AOB/AOA through adjusting TF and reduce NH3 emission the loss of nitrogen during chicken manure composting.


Assuntos
Amônia/análise , Compostagem/métodos , Esterco/análise , Amônia/química , Animais , Archaea/classificação , Archaea/enzimologia , Bactérias/classificação , Bactérias/enzimologia , Galinhas , Correlação de Dados , Meio Ambiente , Germinação , Concentração de Íons de Hidrogênio , Esterco/microbiologia , Microbiota , Nitratos/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Oxirredução , Caules de Planta , Glycine max , Temperatura , Água
7.
J Hazard Mater ; 423(Pt B): 127239, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844357

RESUMO

Herein, we reported a tandem multilevel reactive electrochemical membrane (REM) system was promising for the rapid and complete removal of trace antibiotics from natural waters. Results indicate that a four-stage REM module-in-series system achieved steady over 98% removal of model antibiotic norfloxacin (NOR, 100 µg·L-1) from wastewater treatment plant final effluent and surface water with a residence time of 5.4 s, and the electric energy consumption was only around 0.007-0.011 kWh·m-3. As for the oxidation mechanism, direct electron transfer (DET) oxidation process played an important role in NOR rapid oxidation, enabling the REM system to tolerate various •OH scavenges in natural waters, including natural organic matters, Cl- and HCO3-, even at very high concentration levels. Meanwhile, •OH-mediated indirect oxidation process promotes the oxidation and mineralization of NOR. Although the DET-dominated oxidation mechanism makes the REM system cannot achieve the complete mineralization of NOR with residence times of few seconds, the antibacterial activity from NOR was completely eliminated. This REM system featured effective removal performance of trace contaminants with low energy cost and was tolerant to complex waster matrix, suggesting that it could be a powerful supplementary step for wastewater/water treatment.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , Antibacterianos , Eletrodos , Elétrons , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/análise
8.
Chemosphere ; 291(Pt 1): 132734, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34743798

RESUMO

Over a three-year field trial, the impacts of composted and raw gentamicin fermentation waste (GFW) application to land on residual soil gentamicin levels, physicochemical properties, bacterial community composition, and antibiotic resistance genes (ARGs) were assessed. In the saline-alkali soil tested, GFW application decreased electrical conductivity (EC) and pH. Importantly, there was no measurable long-term accumulation of gentamicin as a result of GFW addition. Changes in the abundance of Bacillus was primarily associated with degradation of gentamicin in soil, whereas wider (i.e. more general) shifts in bacterial communities over the treatments was linked to alteration of soil physicochemical properties, particularly pH, total nitrogen, dissolved organic carbon, EC, NO3--N and NH4+-N. Compared with other treatments, soils receiving composted GFW harbored more types of ARGs and significantly higher (P < 0.05) abundances of mobile genes elements (MGEs) (especially IncQ and Int1) and aminoglycoside ARGs (especially aminoglycoside phosphotransferases genes, APH). Finally, the abundances of ARGs in soils receiving raw and composted GFW were 59.60% and 50.26% higher than that in soils only receiving chemical fertilizer, respectively. Specifically, the abundances of APH, especially strB, were significantly higher than other kinds of ARGs (P < 0.05). The results of linear regression and partial least squares path model showed that MGEs, including plasmids, integrons, and transposons, along with soil properties (EC and NH4+-N) were the main factors associated with change in ARGs. Furthermore, different MGEs were involved in different transfer mechanisms of specific ARGs. Our findings demonstrated the potential risks of using raw and composted GFW as fertilizer, and suggest potential solutions to this problem.


Assuntos
Gentamicinas , Solo , Antibacterianos , Matéria Orgânica Dissolvida , Resistência Microbiana a Medicamentos/genética , Fermentação , Genes Bacterianos , Esterco , Microbiologia do Solo
9.
Sci Total Environ ; 786: 147361, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971610

RESUMO

Animal manure fertilization facilitates the proliferation and dissemination of antibiotic resistance genes (ARGs) in soil, posing high risks to humans and ecosystem health. Although studies suggest that soil types could shape the ARG profiles in greenhouse soil, there is still a lack of comparative studies on the fate of ARGs in different types of manured soils under field trials. Thus, a metagenomic approach was used to decipher the fate of ARGs in 12-year long-term fertilized (inorganic fertilizer, compost manure and a mix of them) acidic, near-neutral and alkaline soils. A total of 408 unique ARG subtypes with multidrug, glycopeptide, beta-lactam and aminoglycoside resistance genes were identified as the most universal ARG types in all soil samples. Genes conferred to beta-lactam was the predominant ARG type in all the manure-amended soils. Genomic and statistical analyses showed that manure application caused the enrichment of 98 and 91 ARG subtypes in acidic and near-neutral soils, respectively, and 8 ARG subtypes in alkaline soil. The abundances of Proteobacteria (acidic and near-neutral soils) and Actinobacteria (alkaline soil), which are the potential hosts of ARGs, were clearly increased in manured soils. Random forest modelling and Pearson correlation analysis revealed that the soil properties (pH and bio-available Zn) and mobile genetic elements had considerable impacts on the transmission of ARGs. A structural equation model further indicated that soil types shaped the ARG profiles by significantly (P < 0.01) influencing the soil properties, bacterial abundance and bacterial diversity, where bacterial abundance was the major factor influencing the ARG profiles. This study systematically explored the mechanisms shaping the ARG profiles of long-term manured soils, and this information could support strategies to manage the dissemination of ARGs in different soil types.


Assuntos
Esterco , Solo , Animais , Antibacterianos , Ecossistema , Genes Bacterianos , Humanos , Microbiologia do Solo
10.
Sci Total Environ ; 773: 145102, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582325

RESUMO

Natural colloidal particles (NCPs), which are ubiquitous and abundant in surface waters, may play a crucial role in the sunlight-driven transformation of organic contaminants. This research focused on the effects of NCPs on the photodegradation of two fluoroquinolone antibiotics (FQs), ofloxacin (OFL) and ciprofloxacin (CIP), and assessed the photosensitivity of colloidal organic matter (COM). Results showed that the photodegradation rate constants (kobs) of OFL and CIP in NCP solutions ranged from 9.28 × 10-2 h-1 to 15.98 × 10-2 h-1 and 63.88 × 10-2 h-1 to 196.59 × 10-2 h-1, respectively, and NCPs can significantly accelerate the photodegradation rate of OFL and CIP. Indirect photodegradation (IP) accounted for >50% of the overall observed degradation in most treatments and was the dominant degradation pathway for the two FQs, especially for CIP, for which IP reached 82%-94%. In the IP process, the contributions of triplet states of colloidal organic matter (3COM⁎) to the photolysis of OFL and CIP were close to 42% and 46%, respectively. The compositions of COM played an important role in the IP of the FQs, among which terrestrial sources of COM tended to have higher photoreactivity than biological sources. This study is essential in predicting the photochemical effect of FQs and also allows for a better understanding of the real environmental fate of antibiotic contaminants.


Assuntos
Ofloxacino , Poluentes Químicos da Água , Antibacterianos , Ciprofloxacina , Lagos , Fotólise , Poluentes Químicos da Água/análise
11.
Water Res ; 190: 116790, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33508906

RESUMO

This study for the first time investigated the advanced treatment of bio-treated landfill leachate effluent using a novel reactive electrochemical membrane (REM) technology at the laboratory and pilot scales. At the laboratory scale, RuO2-Ir-REM, Ti4O7-REM, and ß-PbO2-REM featured similar properties in pore size and water flux. Although RuO2-Ir-REM holds more reactive sites than the other two REMs, ß-PbO2-REM and Ti4O7-REM featured higher oxidation ability than RuO2-Ir-REM, causing their high yield of hydroxyl radical. Consequently, ß-PbO2-REM and Ti4O7-REM performed better than RuO2-Ir-REM, which removed total organic carbon and ammonia nitrogen by 70%-76% and 100%, respectively, after 45 minutes of treatment. Fluorescence spectroscopy analysis showed that humic acid-like substances were oxidized by the REM treatment. Using the ß-PbO2-REM in the lab-scale setup with the solutions circulated, we observed a greater removal of chemical oxygen demand (COD) at a higher applied current or a faster water flux. The pilot system with four large size of ß-PbO2-REMs modules in series was developed based on the lab-scale setup, which steadily treated landfill leachate in compliance with the disposal regulations of China, at an energy consumption of 3.6 kWh/m3. Also, a single-pass REM can effectively prevent the transformation of chloride to chlorate and perchlorate. Our study showed REM technology is a powerful and promising process for the advanced treatment of landfill leachate.


Assuntos
Poluentes Químicos da Água , Análise da Demanda Biológica de Oxigênio , China , Laboratórios , Oxirredução
12.
J Hazard Mater ; 402: 123710, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254754

RESUMO

The dynamics of oxytetracycline (OTC), sulfamerazine (SM1), ciprofloxacin (CIP) and related antibiotic resistance genes (ARGs) during swine manure composting were compared between manure collected from swine fed a diet containing these three antibiotics (TD) and manure directly spiked with these drugs (TS). The composting removal efficiency of OTC (94.9 %) and CIP (87.8 %) in the TD treatment was significantly higher than that of OTC (83.8 %, P < 0.01) and CIP (83.9 %, P < 0.05) in the TS treatment, while SM1 exhibited no significant difference (P > 0.05) between the two treatments. Composting effectively reduced the majority of ARGs in both TD and TS types of manure, especially tetracycline resistance genes (TRGs). Compared with the TS treatment, the abundance of some ARGs, such as tetG, qepA, sul1 and sul2, increased dramatically up to 309-fold in the TD treatment. The microbial composition of the composting system changed significantly during composting due to antibiotic feeding. Redundancy analysis suggested that the abundance of ARGs had a considerable impact on alterations in the physicochemical parameters (C/N, pH and temperature) and bacterial communities (Actinobacteria, Proteobacteria and Firmicutes) during the composting of swine manure.


Assuntos
Compostagem , Oxitetraciclina , Animais , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esterco , Oxitetraciclina/farmacologia , Sulfamerazina/farmacologia , Suínos
13.
J Hazard Mater ; 389: 122082, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32004835

RESUMO

Animal manure containing veterinary antibiotics is a significant source of microbial antibiotic resistance genes (ARGs). Composting of animal manure with wheat straw and sawdust was explored as a means to reduce ARGs load in the final material. The effects of ciprofloxacin, oxytetracycline, sulfamerazine on the bacterial community composition, and how this then affected the removal of seven tetracycline resistance genes (TARGs), four sulfonamide resistance genes (SARGs), and two fluoroquinolone resistance genes (QARGs) were investigated. Treatments receiving either ciprofloxacin or the three mixed antibiotics had reduced bacterial alpha-diversity and displayed shifts in the abundance of Proteobacteria and Firmicutes. This demonstrated that different antibiotics played an important role in bacterial community composition. Furthermore, variation in the physicochemical properties of compost, particularly pH and temperature, was also strongly linked to shifts in bacterial composition over time. Based on network analysis, the reduction of TARGs were associated with loss of Pseudomonas, Pseudoxanthomonas, Pusillimonas, Aquamicrobium, Ureibacillus, Lysinibacillus, Bacillus and Brachybacterium during the thermophilic stage. However, QARGs and SARGs were more strongly affected by the presence of multiple antibiotics. Our results have important implications for reducing the spread of certain ARGs by controlling the composting temperature, pH or the antibiotics species used in husbandry.


Assuntos
Antibacterianos/farmacologia , Compostagem/métodos , Farmacorresistência Bacteriana/genética , Genes Bacterianos/efeitos dos fármacos , Esterco/microbiologia , Microbiota/efeitos dos fármacos , Animais , Ciprofloxacina/farmacologia , Microbiota/genética , Oxitetraciclina/farmacologia , Sulfamerazina/farmacologia , Suínos
14.
Molecules ; 24(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766456

RESUMO

This research focuses on the effects of the composting process on oxytetracycline antibiotic degradation and the bioavailability of arsenic and copper. A compost experiment was conducted using cow and pig manure contaminated with oxytetracycline, and copper and arsenic salts. The changes in physicochemical properties, oxytetracycline concentration, and the germination index were measured. Copper and arsenic were estimated by sequential chemical extraction. We also detected the effects of compost properties, oxytetracycline concentration, and heavy metal (loid)s on the germination index through simple regression analysis. The results showed that the composting process positively and significantly affected heavy metal(loid)s bioavailability, oxytetracycline degradation, and the germination index. Oxytetracycline concentration declined in all treatments, and the decline was more evident in cows' manure. The copper and arsenic bioavailable fraction decreased significantly, while the low bioavailability fraction increased. The germination index increased above 50%, which showed that the compost was free of toxic substances. This result also showed that the compost properties had the most significant impact on the germination index, and their regression had the highest R2 values (0.84 and 0.99) in the cow and pig manure treatments, respectively. In conclusion, the composting process provides an economical method for oxytetracycline degradation and heavy metal(loid)s bioavailability reduction.


Assuntos
Arsênio/metabolismo , Biodegradação Ambiental , Compostagem/métodos , Cobre/metabolismo , Oxitetraciclina/metabolismo , Animais , Arsênio/análise , Disponibilidade Biológica , Bovinos , Cobre/análise , Esterco , Suínos
15.
Water Res ; 160: 361-370, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158618

RESUMO

The application and fate of antibiotics are closely related to human health and the ecological balance, which has gradually aroused the widespread global concerns. Long-term antibiotic residues can easily induce antibiotic resistance and antibiotic resistance genes (ARGs) in the environment. Although many studies have investigated the metabolic pathways of biosynthesis or degradation of oxytetracycline (OTC) and its influencing factors under laboratory or controlled conditions, the understanding of OTC degradation pathways and influencing factors in the environment is still poor. In the present study, the role of Pseudomonas (T4) in OTC biodegradation were investigated with different carbon sources, metal ions, substrate concentrations, temperatures, and pH values, as well as the temporal changes in the relative abundance of OTC ARGs. It was found that OTC could be degraded by T4 as a sole carbon source. Comparison with Cu2+, the addition of Fe3+ could significantly promote the growth of T4, and then increased the OTC degradation percentage to 65.3%. The initial concentration of OTC, temperature, and pH had significant impacts on OTC degradation. At the initial OTC concentration of 50 mg L-1, the percentage degradation of OTC by T4 could reach 81.0% at the presence of Fe3+, and at 40 °C and pH = 7. Common tetracycline ARGs were not found during the OTC degradation by T4 in the present study. The eight main putative OTC degradation byproducts were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Six different reaction types and seven possible degradation pathways were proposed, including enol-ketone conversion, hydroxylation, dehydration, deamination, demethylation and decarbonylation. Under optimal conditions, the OTC degradation percentages by T4 could reach to 88.2%, 91.6% and 92.0% in pond water, fish wastewater and industrial wastewater, respectively. These results demonstrate the high effectiveness of T4 at the presence of Fe3+ for the enhanced biodegradation of OTC in water environment, without resulting in the occurrence of ARGs. This has important implications for the removal of OTC from aquatic environments by the technology proposed from this study.


Assuntos
Oxitetraciclina , Animais , Antibacterianos , Resistência Microbiana a Medicamentos , Pseudomonas , Água
16.
Environ Pollut ; 250: 47-57, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30981935

RESUMO

Frequently detected residuals of antibiotics in crops has drawn increasing attention from research community and the general public. This study was conducted under the controlled environmental conditions to investigate the uptake, translocation and distribution of three different veterinary antibiotics (VAs) in plants of Zea mays L. (maize, the third largest crop in the world, especially in China) and the associated mechanisms. The distribution color-maps of mixed-VAs showed that the highest RCF (root concentration factors) values of chlortetracycline (CTC) and sulfamethoxazole (SMZ) were found in the 0.5-2.0 mm zone (cell division zone), while the highest RCF value of sulfathiazole (ST) was in the 6.0-8.0 mm zone (elongation zone) of root tips (0.5-10.0 mm) after 120 h of exposure to VAs. The translocation factor (TF) of CTC was greater than 1.0, but the TFs of SMZ and ST were less than 1.0 under addition of single antibiotic. However, the TFs of three VAs were all greater than 1.0 at the end of exposure under addition of mixed-VAs. The dissipation of antibiotics by maize was also demonstrated by harvesting all plant parts in an enclosed system. The possible mechanisms for uptake and translocation of VAs in maize were investigated by adding multiple respiration inhibitors into the culture solution. The RCFs of VAs were suppressed heavily by salicylhydroxamic acid (SHAM) and sodium azide (NaN3), which indicates that the uptake of VAs was an active process. The results of TFs and stem concentration factors (SCFs) of CTC and SMZ in HgCl2 treatments revealed that the translocation of VAs was associated with the aquaporin activity in maize. The findings from this study will have significant implications for the management of crop food contamination by VAs and for the development of phytoremediation technology for antibiotics in the environment.


Assuntos
Antibacterianos/metabolismo , Produtos Agrícolas/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Drogas Veterinárias/metabolismo , Zea mays/metabolismo , Transporte Biológico , China , Contaminação de Alimentos
17.
J Environ Manage ; 230: 102-109, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30278273

RESUMO

Understanding the dynamics of veterinary antibiotic and related antibiotic resistance genes (ARGs) during swine manure composting is crucial in assessing the environmental risk of antibiotics, which could effectively reduce their impact in natural environments. This study investigated the dissipation of oxytetracycline (OTC), sulfamerazine (SM1) and ciprofloxacin (CIP) as well as the behaviour of their corresponding ARGs during swine manure composting. These antibiotics were added at two concentration levels and two different methods of addition (single/mixture). The results indicated that the removal efficiency of antibiotics by composting were ≥85%, except for the single-SM1 treatment. The tetracycline resistance genes (TRGs) encoding ribosomal protection proteins (RPP) and efflux pump (EFP) and fluoroquinolone resistance genes (FRGs) could be effectively removed after 42 days. On the contrary, the TRGs encoding enzymatic inactivation (EI) and sulfonamide resistance genes (SRGs) were enriched up to 31-fold (sul 2 in single-low-SM1). Statistical analyses indicated that the behaviour of these class antibiotics and ARGs were controlled by microbial activity and significantly influenced by environmental factors (mainly C/N, moisture and pH) throughout the composting process.


Assuntos
Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Compostagem , Esterco , Oxitetraciclina/metabolismo , Sulfamerazina/metabolismo , Animais , Antibacterianos/análise , Ciprofloxacina/análise , Resistência Microbiana a Medicamentos , Esterco/análise , Oxitetraciclina/análise , Sulfamerazina/análise , Suínos
18.
Ecotoxicol Environ Saf ; 170: 338-345, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30544094

RESUMO

There are many reports indicating that biochar can promote growth; however, its mechanism of action remains unclear. The aim of this study was to show that organic molecules from biochar-extracted liquor affect the growth of rice seedlings. In this study, rice seedlings were cultured under water. Agronomic traits and growth-related genes and proteins were used as markers to describe more precisely the effects of biochar on specific growth parameters of rice seedlings. Our results demonstrated that the 3% biochar-extracted liquor amendment clearly promoted growth. The growth-related gene auxin binding protein 1 and its encoded protein were up-regulated. Molecular simulations revealed that 2-acetyl-5-methylfuran from biochar-extracted liquor could interact with auxin binding protein 1 in a similar way to indoleacetic acid binding. The growth of rice seedlings was therefore affected by biochar-extracted liquor, which acted on the ABP1 signalling pathway.


Assuntos
Carvão Vegetal/farmacologia , Furanos/farmacologia , Oryza/efeitos dos fármacos , Plântula/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Plântula/crescimento & desenvolvimento , Transdução de Sinais
19.
Environ Pollut ; 241: 692-700, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29902752

RESUMO

Understanding the effect of natural colloidal particles (NCPs) on the photochemistry of organic pollutants is crucial to predict the environmental persistence and fate of them in surface waters, and it is, yet, scarcely elucidated. In this study, the pre-filtered surface water (through a 1 µm capsule filter) from Baiyangdian Lake was further separated into four different size NCPs: F1 (0.65-1.0 µm), F2 (100 kD-0.65 µm), F3 (10-100 kD) and F4 (1-10 kD) by cross-flow ultrafiltration (CFUF), and the photochemical kinetics and mechanisms of ofloxacin (OFL) and enrofloxacin (ENR) were investigated in the presence of those particles under simulated sunlight. Results showed that OFL and ENR underwent both direct and indirect photolysis in F1-F4 solutions, and the observed pseudo first-order rate constants (kobs) for target compounds differed depending on the size of NCPs. Direct photolysis accounted for >50% of the degradation in all cases and was the dominant degradation pathway for the two target antibiotics with the exception of OFL in F1 solution. Except for ENR in both F3 and F4 solutions, nearly all NCPs enhanced the degradation of both target compounds by indirect photolytic pathways, especially in F1 solution that showed the largest reactivity for OFL and ENR, promoting the reactions by 63% and 41%, respectively. The excited state colloidal organic matter (3COM∗) plays a significant role in the indirect photolysis, and the adsorptions of OFL and ENR to NCPs were likely to have a pronounced effect in the photochemistry process. Pearson's correlations analysis showed that the kobs(OFL) was significant positive correlated with binding of Fe (r = 0.963, P < 0.05), and the kobs(ENR) was significant positive correlated with the adsorption percentage of OFL (r = 0.999, P < 0.01). This paper has demonstrated that different size NCPs showed the different photochemical contribution to the reaction rate for OFL and ENR.


Assuntos
Coloides/química , Fluoroquinolonas/química , Lagos/química , Ofloxacino/química , Poluentes Químicos da Água/química , Adsorção , Antibacterianos/análise , Enrofloxacina , Cinética , Modelos Químicos , Processos Fotoquímicos , Fotoquímica , Fotólise , Luz Solar , Poluentes Químicos da Água/análise
20.
Bioresour Technol ; 261: 249-256, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29673993

RESUMO

Dynamics in bacterial community composition, along with 13 antibiotic resistance genes (ARGs) and eight mobile genetic elements (MGEs), were assessed during co-composting with gentamicin and lovastatin fermentation residue (GFR and LFR, respectively). Using next generation sequencing, the key bacterial taxa associated with the different stages of composting were identified. Most importantly, Bacillus, belonging to Phylum Firmicutes, was associated with enhanced degradation of gentamicin, decomposition of organic matter (OM) and dissolved organic carbon (DOC), and also extension of the thermophilic phase of the composting cycle. During the course of composting, the patterns of different ARGs/MGEs varied. However, the total and the normalized (to bacterial numbers) copies both remained high. The abundance of various ARGs was related to bacterial abundance and community composition, and the changing pattern of individual ARGs was influenced by the selectivity of MGEs and bacteria.


Assuntos
Antibacterianos/metabolismo , Compostagem , Fermentação , Resistência Microbiana a Medicamentos , Genes Bacterianos , Gentamicinas , Sequências Repetitivas Dispersas , Lovastatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...