Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 18(12): 1448-1455, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37537275

RESUMO

Lithium phosphorus oxynitride (LiPON) is an amorphous solid electrolyte that has been extensively studied over the last three decades. Despite the promise of pairing it with various electrode materials, LiPON's rigidity and air sensitivity set limitations to understanding its intrinsic properties. Here we report a methodology to synthesize LiPON in a free-standing form that manifests remarkable flexibility and a Young's modulus of ∼33 GPa. We use solid-state nuclear magnetic resonance and differential scanning calorimetry to quantitatively reveal the chemistry of the Li/LiPON interface and the presence of a well-defined LiPON glass-transition temperature of 207 °C. Combining interfacial stress and a gold seeding layer, our free-standing LiPON shows a uniformly dense deposition of lithium metal without the aid of external pressure. This free-standing LiPON film offers opportunities to study fundamental properties of LiPON for interface engineering for solid-state batteries.

2.
J Am Chem Soc ; 145(17): 9624-9633, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37071778

RESUMO

Sulfurized polyacrylonitrile (SPAN) represents a class of sulfur-bonded polymers, which have shown thousands of stable cycles as a cathode in lithium-sulfur batteries. However, the exact molecular structure and its electrochemical reaction mechanism remain unclear. Most significantly, SPAN shows an over 25% 1st cycle irreversible capacity loss before exhibiting perfect reversibility for subsequent cycles. Here, with a SPAN thin-film platform and an array of analytical tools, we show that the SPAN capacity loss is associated with intramolecular dehydrogenation along with the loss of sulfur. This results in an increase in the aromaticity of the structure, which is corroborated by a >100× increase in electronic conductivity. We also discovered that the conductive carbon additive in the cathode is instrumental in driving the reaction to completion. Based on the proposed mechanism, we have developed a synthesis procedure to eliminate more than 50% of the irreversible capacity loss. Our insights into the reaction mechanism provide a blueprint for the design of high-performance sulfurized polymer cathode materials.

3.
ACS Appl Mater Interfaces ; 13(10): 12033-12041, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33657791

RESUMO

Flexible solid-state zinc-air batteries (ZABs) generally suffer from poor electrolyte/electrode contact and mechanical degradation in practical applications. In addition, CO2 corrosion is also a common issue for ZABs with alkaline electrolyte. Herein, we report a thermoreversible alkaline hydrogel electrolyte that can simultaneously solve the aforementioned problems. Through a simple cooling process, the hydrogel electrolyte transforms from solid state to liquid state that can not only restore the deformed electrolyte layer to its original state but also rebuild intimate contact between electrode and electrolyte. Moreover, the ZAB based on this hydrogel electrolyte exhibits an unprecedented anti-CO2 property. As a result, such a battery shows almost 2.5 times discharge duration than that of ZAB based on liquid electrolyte.

4.
ACS Appl Mater Interfaces ; 12(49): 54473-54480, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33253527

RESUMO

N95 decontamination protocols and KN95 respirators have been described as solutions to a lack of personal protective equipment. However, there are a few material science studies that characterize the charge distribution and physical changes accompanying disinfection treatments, particularly heating. Here, we report the filtration efficiency, dipole charge density, and fiber integrity of N95 and KN95 respirators before and after various decontamination methods. We found that the filter layers in N95 and KN95 respirators maintained their fiber integrity without any deformations during disinfection. The filter layers of N95 respirators were 8-fold thicker and had 2-fold higher dipole charge density than that of KN95 respirators. Emergency Use Authorization (EUA)-approved KN95 respirators showed filtration efficiencies as high as N95 respirators. Interestingly, although there was a significant drop in the dipole charge in both respirators during decontamination, there was no remarkable decrease in the filtration efficiencies due to mechanical filtration. Cotton and polyester face masks had a lower filtration efficiency and lower dipole charge. In conclusion, a loss of electrostatic charge does not directly correlate to the decreased performance of either respirator.

5.
Angew Chem Int Ed Engl ; 59(49): 22185-22193, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818306

RESUMO

Lithium phosphorus oxynitride (LiPON) is an amorphous solid-state lithium ion conductor displaying exemplary cyclability against lithium metal anodes. There is no definitive explanation for this stability due to the limited understanding of the structure of LiPON. Herein, we provide a structural model of RF-sputtered LiPON. Information about the short-range structure results from 1D and 2D solid-state NMR experiments. These results are compared with first principles chemical shielding calculations of Li-P-O/N crystals and ab initio molecular dynamics-generated amorphous LiPON models to unequivocally identify the glassy structure as primarily isolated phosphate monomers with N incorporated in both apical and as bridging sites in phosphate dimers. Structural results suggest LiPON's stability is a result of its glassy character. Free-standing LiPON films are produced that exhibit a high degree of flexibility, highlighting the unique mechanical properties of glassy materials.

6.
medRxiv ; 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32676621

RESUMO

Personal protective equipment (PPE) including N95 respirators are critical for persons exposed to SARS-CoV-2. KN95 respirators and N95 decontamination protocols have been described as solutions to a lack of such PPE. However, there are a few materials science studies that characterize the charge distribution and physical changes accompanying disinfection treatments particularly heating. Here, we report the filtration efficiency, dipole charge density, and fiber integrity of pristine N95 and KN95 respirators before and after various decontamination methods. We found that the filter layer of N95 is 8-fold thicker than that of KN95, which explains its 10% higher filtration efficiency (97.03 %) versus KN95 (87.76 %) under pristines condition. After 60 minutes of 70 °C treatment, the filtration efficiency and dipole charge density of N95 became 97.16% and 12.48 µC/m2, while those of KN95 were 83.64% and 1.48 µC/m2 ; moreover, fit factor of N95 was 55 and that of KN95 was 2.7. In conclusion, the KN95 respirator is an inferior alternative of N95 respirator. In both systems, a loss of electrostatic charge does not directly correlate to a decrease in performance.

7.
Nanotechnology ; 31(10): 105402, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31751956

RESUMO

Clarifying the interaction between active materials and current collectors of the same electrode is crucial for understanding the electrochemical energy storage mechanism and designing high-performance supercapacitors. The interaction mechanism is mainly due to the evolution of chemical bonding. Here, we explore the chemical bonding evolution between cobalt-nickel layered double hydroxide and carbon fiber paper by using ex situ x-ray photoelectron spectroscopy during redox reaction. The results reveal that chemical bonding corresponds to more ionic states at the lowest potential and more covalent states at the highest potential. Attributed to the formation of C-O-Metal (Co, Ni) chemical bonds, high capacitance with enhanced stability and rate capability is obtained. The Co-Ni layered double hydroxide electrode exhibits a high areal and mass specific capacitance of 0.55 and 952 F g-1 at a low mass loading of 0.58 mg cm-2. At a high mass loading of 3.59 mg cm-2, high areal and mass specific capacitance of 3.24 F cm-2 and 811 F g-1 are obtained. Based on this, a hybrid supercapacitor is fabricated with high-mass-loading Co-Ni layered double hydroxide and active carbon as positive and negative electrodes, respectively. As a result, this device delivers a prominent energy density of 20.9 Wh cm-3 at a power density of 0.12 W cm-3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...