Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 9(3): 479-486, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38258388

RESUMO

As the demand for increasingly varied types of 1-dimensional (1D) materials grows, there is a greater need for new methods to synthesize these types of materials in a simple and scalable way. Chemical exfoliation is commonly used to make 2-dimensional (2D) materials, often in a way that is both straightforward and suitable for making larger quantities, yet this method has thus far been underutilized for synthesizing 1D materials. In the few instances when chemical exfoliation has been used to make 1D materials, the starting compound has been a van der Waals material, thus excluding any structures without these weak bonds inherently present. We demonstrate here that ionically bonded crystals can also be chemically exfoliated to 1D structures by choosing KFeS2 as an example. Using chemical exfoliation, antiferromagnetic 1D nanoribbons can be yielded in a single step. The nanoribbons are crystalline and closely resemble the parent compound both in structure and in intrinsic antiferromagnetism. The facile chemical exfoliation of an ionically bonded crystal shown in this work opens up opportunities for the synthesis of both magnetic and non-magnetic 1D nanomaterials from a greater variety of starting structures.

2.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081235

RESUMO

Aiming to improve the output performance of a valveless piezoelectric pump, this article presents a valveless piezoelectric pump with a herringbone bluffbody. The bluffbody is herringbone shaped and distributed in a tapered chamber. The tapered chamber and the bluffbody create a large reverse resistance in the chamber, thus effectively mitigating the backflow problem of the valveless pump. The theoretical analysis determined the relationship between the flow rate and the flow resistance coefficient as well as the variation of the pump chamber volume. It was also concluded that the piezoelectric pump has the best output flow at intrinsic frequencies. Through simulation calculations, the effectiveness of the bluffbody structure in mitigating backflow in piezoelectric pumps is analyzed to provide a reference for experimental prototype design parameters. Finally, a range of prototypes is produced for experimentation. The experimental results show that the designed bluffbody shape can increase the return energy loss to effectively mitigate the return flow issues of the valveless piezoelectric pump, thus improving the output performance. The optimum output flow rate is 158.5 ml/min at 200 V and 52.5 Hz and the tapered chamber angle of 6°, and the bluffbody height, angle, and quantities are 2 mm, 40°, and 2, respectively. The construction of the valveless piezoelectric pump proposed in this research can be used as a reference for subsequent improvements in the performance of valveless piezoelectric pumps, and due to the high output performance, experimental studies can be carried out in applications such as dispensing and heat dissipation in electronic products.

3.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889150

RESUMO

Recently, synthetic jet pumps have been expected to be used in electronic heat dissipation devices due to the vortex suction phenomenon for transporting fluids. Aiming to improve the delivery ability of the jet pump to output fluid continuously, a novel flat lay-type synthetic jet pump (FLTSJP) with a Y-shaped jet chamber is proposed in this paper. Based on the synthetic jet effect, the pump chamber continuously outputs fluid in one cycle. The output performance of FLTSJP is theoretically analyzed to be affected by the outlet cone angle. The one-cycle flow mechanism of the fluid in the Y-shaped jet chamber is simulated. FLTSJP is manufactured, and a test system is built. Experiments show that the Y-shaped jet chamber effectively improves the output performance. The optimum flow rate and outlet pressure were both reached at 160 V and 40 Hz, which were 20.63 ml/min and 333.43 Pa, respectively. This FLTSJP effectively improves the output performance of synthetic jet pumps and provides a new research concept of water-cooled devices for electronic heat dissipation.

4.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796092

RESUMO

Social progress is inseparable from the utilization of energy, signals of extreme consumption of fossil energy and energy crisis appear frequently around the world. Human beings are paying more and more attention to new technologies and the sustainable development of energy collection and conversion. The emergence of piezoelectric, electromagnetic, electrostatic, and triboelectric mechanisms provides a variety of effective methods for new environmental energy collection and conversion technologies. Among them, the piezoelectric-electromagnetic hybrid energy harvester (P-EHEH) has been widely studied due to its high output power, simple structure, and easy miniaturization. Continuous progress has been made in the research of P-EHEH through theoretical exploration, structural optimization, and performance improvement. This Review focuses on the review of P-EHEH at the application level. A detailed introduction summarizes the research status of P-EHEH applied to human body devices, monitoring sensors, and power supply devices, as well as the development status of back-end electronic modules and interface circuits. The future challenges and development prospects of P-EHEH are anticipated.

5.
Nat Commun ; 14(1): 6583, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852969

RESUMO

Weyl semimetals exhibit exotic magnetotransport phenomena such as the chiral anomaly and surface-to-bulk quantum oscillations (Weyl orbits) due to chiral bulk states and topologically protected surface states. Here we report a unique transport property in crystals of the ferromagnetic nodal-line Weyl semimetal Co2MnGa that have been polished to micron thicknesses using a focused ion beam. These thin crystals exhibit a large planar resistance anisotropy (10 × ) with axes that rotate by 90 degrees between opposite faces of the crystal. We use symmetry arguments and electrostatic simulations to show that the observed anisotropy resembles that of an isotropic conductor with surface states that are impeded from hybridization with bulk states. The origin of these states awaits further experiments that can correlate the surface bands with the observed 90° twist.

6.
Microsc Microanal ; 29(Supplement_1): 213-214, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613089
7.
Microsc Microanal ; 29(Supplement_1): 1513-1514, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613705
8.
Nano Lett ; 23(15): 6868-6874, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37477415

RESUMO

Bulk Td-WTe2 is a semimetal, while its monolayer counterpart is a two-dimensional (2D) topological insulator. Recently, electronic transport resembling a Luttinger liquid state was found in twisted-bilayer WTe2 (tWTe2) with a twist angle of ∼5°. Despite the strong interest in 2D WTe2 systems, little experimental information is available about their intrinsic microstructure, leaving obstacles in modeling their physical properties. The monolayer, and consequently tWTe2, are highly air-sensitive, and therefore, probing their atomic structures is difficult. In this study, we develop a robust method for atomic-resolution visualization of monolayers and tWTe2 obtained through mechanical exfoliation and fabrication. We confirm the high crystalline quality of mechanically exfoliated WTe2 samples and observe that tWTe2 with twist angles of ∼5 and ∼2° retains its pristine moiré structure without substantial deformations or reconstructions. The results provide a structural foundation for future electronic modeling of monolayer and tWTe2 moiré lattices.

9.
Nano Lett ; 23(12): 5779-5784, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37314229

RESUMO

We employ a hybrid diffusion- and nucleation-based kinetic Monte Carlo model to elucidate the significant impact of adatom diffusion on incipient surface dislocation nucleation in metal nanowires. We reveal a stress-regulated diffusion mechanism that promotes preferential accumulation of diffusing adatoms near nucleation sites, which explains the experimental observations of strong temperature but weak strain-rate dependence as well as temperature-dependent scatter of the nucleation strength. Furthermore, the model demonstrates that a decreasing rate of adatom diffusion with an increasing strain rate will lead to stress-controlled nucleation being the dominant nucleation mechanism at higher strain rates. Overall, our model offers new mechanistic insights into how surface adatom diffusion directly impacts the incipient defect nucleation process and resulting mechanical properties of metal nanowires.

10.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125857

RESUMO

This paper introduced a novel energy harvester with a tunnel and drop-shaped bluffbody for self-actuation and wind speed sensing. The harvester exhibits dual vibrating mechanisms of vortex-induced vibration (VIV) and galloping. Theoretical and numerical analyses were conducted to study the energy conversion relationship and fluid field of the harvester, and the conclusions were verified by controlled variable experiments. The optimal design values of inlet angle I 40°, polyvinylidene fluoride (PVDF) angle P 10°, and exit angle E 10° were demonstrated with the highest output of 10.42 Vp-p at the wind speed of 18 m/s. The output voltage of the PVDF energy harvester has a reliable relationship with the wind speed as a function of wind speed sensor, which could be applied for meteorological information collection and fluid flow rate monitoring with further study conducted underwater.

11.
Rev Sci Instrum ; 94(3): 031501, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012740

RESUMO

In this review, we review the recent research progress and results of piezoelectric energy harvesters applying mechanical tuning techniques in terms of literature background, methods of mechanical tuning, and practical applications. In the past few decades, piezoelectric energy harvesting techniques and mechanical tuning techniques have received increasing attention and made significant progress. Mechanical-tuning techniques are those that allow the resonant vibration energy harvesters the mechanical resonant frequency values to be adjusted to coincide with the excitation frequency. According to the different tuning methods, this review classifies mechanical-tuning techniques based on magnetic action, different piezoelectric materials, axial load, the variable center of gravity, various stresses, and self-tuning and summarizes the corresponding research results, comparing the differences between the same methods. In addition, the current application of the mechanical-tuning techniques is introduced, and the future development of mechanical tuning techniques is analyzed, facilitating the reader to better understand how mechanical-tuning techniques can improve the output performance of energy harvesters.

12.
Rev Sci Instrum ; 94(3): 035004, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012818

RESUMO

In this paper, a piezoelectric electromagnetic composite energy harvester is studied. The device consists of a mechanical spring, upper and lower base, magnet coil, etc. The upper and lower bases are connected by struts and mechanical springs and secured by end caps. The device moves up and down under the vibration of the external environment. As the upper base moves downward, the circular excitation magnet moves downward, and the piezoelectric magnet is deformed under a non-contact magnetic force. Traditional energy harvesters have the problems of a single form of power generation and inefficient energy collection. This paper proposes a piezoelectric electromagnetic composite energy harvester to improve energy efficiency. Through theoretical analysis, the power generation trends of rectangular, circular, and electric coils are obtained. Simulation analysis yields the maximum displacement of the rectangular and circular piezoelectric sheets. The device uses piezoelectric power generation and electromagnetic power generation to achieve compound power generation, improve the output voltage and output power, and can provide power supply to more electronic components. By introducing the nonlinear magnetic action, the mechanical collision and wear of the piezoelectric elements during the work are avoided, so that the service life and service life of the equipment is extended. The experimental results show that the highest output voltage of the device is 13.28 V when the circular magnets mutually repel rectangular mass magnets and the tip magnet of the piezoelectric element is 0.6 mm from the sleeve. The external resistance is 1000 Ω, and the maximum power output of the device is 5.5 mW.

13.
Front Surg ; 10: 1135596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021088

RESUMO

Background: Surgical parathyroidectomy (PTX) is necessary for patients with severe and progressive secondary hyperparathyroidism (SHPT) refractory to medical treatment. Recurrence of SHPT after PTX is a serious clinical problem. Both supernumerary mediastinal parathyroid gland and parathyromatosis are the rare causes of recurrent renal SHPT. We report a rare case of recurrent renal SHPT due to supernumerary mediastinal parathyroid gland and parathyromatosis. Case presentation: A 53-year-old man underwent total parathyroidectomy with autotransplantation due to the drug-refractory SHPT 17 years ago. In the last 11 months, the patient experienced symptoms including bone pain and skin itch, and the serum intact parathyroid hormone (iPTH) level elevated to 1,587 pg/ml. Ultrasound detected two hypoechoic lesions located at the dorsal area of right lobe of the thyroid gland, and both lesions presented as characteristics of hyperparathyroidism in contrast-enhanced ultrasound. 99mTc-MIBI/SPECT detected a nodule in the mediastinum. A reoperation involved a cervicotomy for excising parathyromatosis lesions and the surrounding tissue and a thoracoscopic surgery for resecting a mediastinal parathyroid gland. According to a histological examination, two lesions behind the right thyroid lobe and one lesion in the central region had been defined as parathyromatosis. A nodule in the mediastinum was consistent with hyperplastic parathyroid. The patient remained well for 10 months with alleviated symptoms and stabilized iPTH levels in the range of 123-201 pg/ml. Conclusion: Although rare, recurrent SHPT may be caused by a coexistence of both supernumerary parathyroid glands and parathyromatosis, which should receive more attention. The combination of imaging modalities is important for reoperative locations of parathyroid lesions. To successfully treat parathyromatosis, all the lesions and the surrounding tissue must be excised. Thoracoscopic surgery is a reliable and safe approach for the resection of ectopic mediastinal parathyroid glands.

14.
Rev Sci Instrum ; 94(2): 025004, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859045

RESUMO

This paper describes a rotary piezoelectric wind energy harvester with bilateral excitation (B-RPWEH) that improves power generation performance. The power generating unit in the current piezoelectric cantilever wind energy harvester was primarily subjected to a periodic force in a single direction. The B-RPWEH adopted a reasonable bilateral magnet arrangement, thus avoiding the drawbacks of limited piezoelectric cantilever beam deformation and unstable power generation due to unidirectional excitation force. The factors affecting the power generation were theoretically analyzed, and the natural frequency and excitation force of the piezoelectric cantilever have been simulated and analyzed. A comprehensive experimental research method was used to investigate the output performance. The B-RPWEH reaches a maximum output voltage of 20.48 Vpp when the piezoelectric sheet is fixed at an angle of 30°, the Savonius turbine number is 3, and the magnet diameter is 8 mm. By adjusting the fixed angle of the piezoelectric sheet, the number of Savonius wind turbine blades, and the magnet diameter, the maximum voltage is increased by 52.38%, 4.49%, and 245.95%, respectively. The output power is 24.5 mW with an external resistor of 8 kΩ, and the normalized power density is 153.14 × 10-3 mW/mm3, capable of powering light-emitting diodes (LEDs). This structure can drive wireless networks or low-power electronics.

15.
Sci Adv ; 9(12): eadd6167, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947621

RESUMO

Liquid-phase chemical exfoliation can achieve industry-scale production of two-dimensional (2D) materials for a wide range of applications. However, many 2D materials with potential applications in quantum technologies often fail to leave the laboratory setting because of their air sensitivity and depreciation of physical performance after chemical processing. We report a simple chemical exfoliation method to create a stable, aqueous, surfactant-free, superconducting ink containing phase-pure 1T'-WS2 monolayers that are isostructural to the air-sensitive topological insulator 1T'-WTe2. The printed film is metallic at room temperature and superconducting below 7.3 kelvin, shows strong anisotropic unconventional superconducting behavior with an in-plane and out-of-plane upper critical magnetic field of 30.1 and 5.3 tesla, and is stable at ambient conditions for at least 30 days. Our results show that chemical processing can make nontrivial 2D materials that were formerly only studied in laboratories commercially accessible.

16.
Nano Lett ; 23(7): 2695-2702, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36920080

RESUMO

Internal interfaces in Weyl semimetals (WSMs) are predicted to host distinct topological features that are different from the commonly studied external interfaces (crystal-to-vacuum boundaries). However, the lack of atomically sharp and crystallographically oriented internal interfaces in WSMs makes it difficult to experimentally investigate topological states buried inside the material. Here, we study a unique internal interface known as merohedral twin boundary in chemically synthesized single-crystal nanowires (NWs) of CoSi, a chiral WSM of space group P213 (No. 198). Scanning transmission electron microscopy reveals that this internal interface is a (001) twin plane which connects two enantiomeric counterparts at an atomically sharp interface with inversion twinning. Ab initio calculations show localized internal Fermi arcs at the (001) twin plane that can be clearly distinguished from both external Fermi arcs and bulk states. These merohedrally twinned CoSi NWs provide an ideal platform to explore topological properties associated with internal interfaces in WSMs.

17.
Phys Rev Lett ; 130(4): 046402, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763428

RESUMO

The interplay of nontrivial topology and superconductivity in condensed matter physics gives rise to exotic phenomena. However, materials are extremely rare where it is possible to explore the full details of the superconducting pairing. Here, we investigate the momentum dependence of the superconducting gap distribution in a novel Dirac material PdTe. Using high resolution, low temperature photoemission spectroscopy, we establish it as a spin-orbit coupled Dirac semimetal with the topological Fermi arc crossing the Fermi level on the (010) surface. This spin-textured surface state exhibits a fully gapped superconducting Cooper pairing structure below T_{c}∼4.5 K. Moreover, we find a node in the bulk near the Brillouin zone boundary, away from the topological Fermi arc. These observations not only demonstrate the band resolved electronic correlation between topological Fermi arc states and the way it induces Cooper pairing in PdTe, but also provide a rare case where surface and bulk states host a coexistence of nodeless and nodal gap structures enforced by spin-orbit coupling.

19.
Int J Endocrinol ; 2023: 1901697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36700169

RESUMO

Objective: Our study aimed to develop and validate a nomogram to predict severe hypocalcemia (SH) before total parathyroidectomy (TPTX) without auto-transplantation in patients with secondary hyperparathyroidism. Methods: A total of 299 consecutive patients who underwent TPTX without transplantation for secondary hyperparathyroidism were selected from the General Hospital of Northern Theater Command between January 2013 and December 2021. Of these, patients who underwent surgery between January 2013 and December 2020 formed the training cohort (n = 208) to develop a nomogram, and those who underwent surgery thereafter formed the validation cohort (n = 91) to validate the performance of this nomogram. Univariate and multivariate logistic regression analyses were used to identify the risk factors associated with SH, and then, a nomogram was constructed. Results: The incidence of postoperative SH was 27.9% and 35.2% in the training and validation cohorts, respectively. The preoperative factors associated with SH were younger age, lower serum calcium (Ca) level, higher intact parathyroid hormone (iPTH) level, and higher serum alkaline phosphatase (ALP) level. Incorporating these 4 factors, the nomogram achieved good concordance indexes of 0.866 (95%CI, 0.816-0.916) and 0.867 (95% CI, 0.793-0.941) in predicting SH in the training and validation cohorts, respectively, and had well-fitted calibration curves. The positive predictive values of the nomogram were 64.7% (54.1%-78.4%) and 75.0% (58.6%-88.5%), and negative predictive values of the nomogram were 90.0% (82.9%-93.6%) and 86.4% (73.5%-94.0%) for the training and validation cohorts, respectively. Conclusions: We developed and validated a nomogram for the prediction of SH in patients who underwent TPTX without auto-transplantation for secondary hyperparathyroidism. Our nomogram may facilitate the identification of high-risk SH in patients after TPTX and optimization of preoperative decision-making.

20.
Proc Natl Acad Sci U S A ; 120(1): e2215484119, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574683

RESUMO

We report the discovery of a dodecagonal quasicrystal Mn72.3Si15.6Cr9.7Al1.8Ni0.6-composed of a periodic stacking of atomic planes with quasiperiodic translational order and 12-fold symmetry along the two directions perpendicular to the planes-accidentally formed by an electrical discharge event in an eolian dune in the Sand Hills near Hyannis, Nebraska, United States. The quasicrystal, coexisting with a cubic crystalline phase with composition Mn68.9Si19.9Ni7.6Cr2.2Al1.4, was found in a fulgurite consisting predominantly of fused and melted sand along with traces of melted conductor metal from a nearby downed power line. The fulgurite may have been created by a lightning strike that combined sand with material from downed power line or from electrical discharges from the downed power line alone. Extreme temperatures of at least 1,710 °C were reached, as indicated by the presence of SiO2 glass in the sample. The dodecagonal quasicrystal is an example of a quasicrystal of any kind formed by electrical discharge, suggesting other places to search for quasicrystals on Earth or in space and for synthesizing them in the laboratory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...