Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 501, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129853

RESUMO

Oral and maxillofacial diseases are one of the most prevalent diseases in the world, which not only seriously affect the health of patients' oral and maxillofacial tissues, but also bring serious economic and psychological burdens to patients. Therefore, oral and maxillofacial diseases require effective treatment. Traditional treatments have limited effects. In recent years, nature exosomes have attracted increasing attention due to their ability to diagnose and treat diseases. However, the application of nature exosomes is limited due to low yield, high impurities, lack of targeting, and high cost. Engineered exosomes can be endowed with better comprehensive therapeutic properties by modifying exosomes of parent cells or directly modifying exosomes, and biomaterial loading exosomes. Compared with natural exosomes, these engineered exosomes can achieve more effective diagnosis and treatment of oral and maxillary system diseases, and provide reference and guidance for clinical application. This paper reviews the engineering modification methods of exosomes and the application of engineered exosomes in oral and maxillofacial diseases and looks forward to future research directions.


Assuntos
Exossomos , Humanos , Materiais Biocompatíveis
2.
Int J Nanomedicine ; 18: 6813-6828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026533

RESUMO

Background: Carbon dots (CDs), a novel nanomaterial, have gained significant attention over the past decade due to their remarkable fluorescence properties, low toxicity, and biocompatibility. These characteristics make them promising in various applications, especially in biomedicine. However, most CDs are currently synthesized using chemical materials, and their biocompatibility falls short of natural compounds. Research on extracting CDs from natural sources is limited, and their potential in biomedicine remains largely unexplored. Methods: We extracted CDs from resveratrol, a natural plant compound, and enhanced their water solubility using citric acid. Characterization of resveratrol-based carbon dots (RES-CDs) was carried out using various techniques, including UV-Vis, SEM, TEM, FTIR, XRD, and fluorescence spectroscopy. Extensive biocompatibility tests, wound healing assays, cell migration studies, and angiogenesis experiments were conducted using human umbilical vein endothelial cells (HUVEC). In addition, we investigated the biocompatibility and wound healing potential of RES-CDs in an in vivo rat model of inflammation. Results: RES-CDs exhibited stable yellow-green fluorescence under 365-nanometer ultraviolet light and demonstrated excellent biocompatibility. In wound healing experiments, RES-CDs outperformed resveratrol in terms of cell scratch healing, migration, and tube formation. In a rat skin defect model, RES-CDs promoted wound healing and stimulated the formation of blood vessels and tissue regeneration near the wound site, as evidenced by increased CD31 and VEGF expression. Conclusion: Resveratrol-derived CDs with enhanced water solubility show superior performance in tissue healing compared to resveratrol. This discovery opens new possibilities for the clinical application of resveratrol-based carbon dots.


Assuntos
Carbono , Pontos Quânticos , Ratos , Humanos , Animais , Resveratrol/farmacologia , Carbono/química , Cicatrização , Células Endoteliais da Veia Umbilical Humana , Água , Pontos Quânticos/química
3.
Int J Biol Macromol ; 253(Pt 6): 127405, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37832617

RESUMO

The construction of biomaterials that can facilitate wound healing is significantly challenging in the medical field, and bacterial infections increase this complexity. In this study, we selected the biomacromolecule carboxymethyl chitosan as a carbon source and citric acid as an auxiliary carbon source. We prepared carbon quantum dots with multicolor luminescence properties and higher quantum yields (QYs) using a facile one-pot hydrothermal method. We characterized them to select carbon dots (CDs) suitable for cell growth. Subsequently, their biocompatibility with L929 cells, antibacterial properties against Staphylococcus aureus, and efficiency in promoting wound healing in vivo were investigated. Our experimental results showed that CDs at an appropriate concentration had excellent bioimaging ability, were suitable for cell growth, and accelerated the healing of infected wounds. We believe these bioactive CDs have great potential in promoting wound healing.


Assuntos
Quitosana , Pontos Quânticos , Luminescência , Carbono , Cicatrização , Antibacterianos/farmacologia
4.
Tissue Eng Regen Med ; 20(7): 1017-1039, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37688748

RESUMO

BACKGROUND: Cartilage, bone, and teeth, as the three primary hard tissues in the human body, have a significant application value in maintaining physical and mental health. Since the development of bacterial cellulose-based composite materials with excellent biomechanical strength and good biocompatibility, bacterial cellulose-based composites have been widely studied in hard tissue regenerative medicine. This paper provides an overview of the advantages of bacterial cellulose-based for hard tissue regeneration and reviews the recent progress in the preparation and research of bacterial cellulose-based composites in maxillofacial cartilage, dentistry, and bone. METHOD: A systematic review was performed by searching the PubMed and Web of Science databases using selected keywords and Medical Subject Headings search terms. RESULTS: Ideal hard tissue regenerative medicine materials should be biocompatible, biodegradable, non-toxic, easy to use, and not burdensome to the human body; In addition, they should have good plasticity and processability and can be prepared into materials of different shapes; In addition, it should have good biological activity, promoting cell proliferation and regeneration. Bacterial cellulose materials have corresponding advantages and disadvantages due to their inherent properties. However, after being combined with other materials (natural/ synthetic materials) to form composite materials, they basically meet the requirements of hard tissue regenerative medicine materials. We believe that it is worth being widely promoted in clinical applications in the future. CONCLUSION: Bacterial cellulose-based composites hold great promise for clinical applications in hard tissue engineering. However, there are still several challenges that need to be addressed. Further research is needed to incorporate multiple disciplines and advance biological tissue engineering techniques. By enhancing the adhesion of materials to osteoblasts, providing cell stress stimulation through materials, and introducing controlled release systems into matrix materials, the practical application of bacterial cellulose-based composites in clinical settings will become more feasible in the near future.


Assuntos
Materiais Biocompatíveis , Medicina Regenerativa , Humanos , Medicina Regenerativa/métodos , Celulose , Engenharia Tecidual/métodos , Cartilagem
5.
Biomed Mater ; 18(4)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37321231

RESUMO

Carbon dots (CDs) are novel zero-dimensional spherical nanoparticles with water solubility, biocompatibility and photoluminescence properties. As the variety of raw materials for CDs synthesis becomes more and more abundant, people tend to choose precursors from nature. Many recent studies have shown that CDs can inherit properties similar to their carbon sources. Chinese herbal medicine has a variety of therapeutic effects to many diseases. In recent years, many literatures have chosen herbal medicine as raw materials, however, how the properties of raw materials affect CDs has not been systematically summarized. The intrinsic bioactivity and potential pharmacological effects of CDs have not received sufficient attention and have become a 'blind spot' for research. In this paper, the main synthesis methods were introduced and the effects of carbon sources from different herbal medicine on the properties of CDs and related applications were reviewed. In addition, we briefly review some of the biosafety assessments of CDs, and make recommendations for biomedical applications. CDs that inherit the therapeutic properties of herbs can enable diagnosis and treatment of clinical diseases, bioimaging, and biosensing in the future.


Assuntos
Nanopartículas , Plantas Medicinais , Pontos Quânticos , Humanos , Carbono , Contenção de Riscos Biológicos , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...