Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Clin Cases ; 11(28): 6670-6679, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37901031

RESUMO

ß cells are the main cells responsible for the hypoglycemic function of pancreatic islets, and the insulin secreted by these cells is the only hormone that lowers blood glucose levels in the human body. ß cells are regulated by various factors, among which neurotransmitters make an important contribution. This paper discusses the effects of neurotransmitters secreted by various sympathetic and parasympathetic nerves on ß cells and summarizes the mechanisms by which various neurotransmitters regulate insulin secretion. Many neurotransmitters do not have a single source and are not only released from nerve terminals but also synthesized by ß cells themselves, allowing them to synergistically regulate insulin secretion. Almost all of these neurotransmitters depend on the presence of glucose to function, and their actions are mostly related to the Ca2+ and cAMP concentrations. Although neurotransmitters have been extensively studied, many of their mechanisms remain unclear and require further exploration by researchers.

2.
Exp Ther Med ; 22(3): 1002, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34345284

RESUMO

Familial hypertrophic cardiomyopathy (HCM) is one of the most common types of genetic heart disorder and features high genetic heterogeneity. HCM is a major cause of sudden cardiac death and also an important cause of heart failure-related disability. A pedigree with suspected familial HCM was recruited for the present study to identify genetic abnormalities. HCM was confirmed by echocardiography and clinical data of the family members were collected. Genomic DNA was extracted from the peripheral blood and sequenced based on standard whole-exome sequencing (WES) protocols. Sanger sequencing was further performed to verify mutation sites and their association with HCM. WES and Sanger sequencing revealed a heterozygous missense mutation (c.2011C>T p.R671C) in myosin heavy chain 7 (MYH7) that was identified in three family members. The Arg671Cys mutation was located in exon 18 and, to the best of our knowledge, has not been previously reported in familial HCM. Furthermore, family members carrying the same mutated gene were of different sexes and clinical phenotypes. They included the proband, a 17-year-old survivor of sudden cardiac arrest with ventricular systolic dysfunction, the proband's maternal uncle, who presented with ventricular diastolic dysfunction and the proband's mother, who had no obvious clinical symptoms and did not present with cardiac dysfunction. However, echocardiology indicated that the proband's mother had an enlarged left atrium, slightly thicker right anterior wall and anterior septum and an expanded atrial septum. Therefore, HCM exhibited obvious genetic and phenotypic heterogeneity. To the best of our knowledge, the present study was the first to report such a mutation in the MYH7 gene in familial HCM. In addition, the present study demonstrated that WES is a powerful tool for identifying genetic variants in HCM.

3.
Front Pharmacol ; 11: 582680, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304270

RESUMO

Uric acid (UA) is the end product of purine nucleotide metabolism in the human body. Hyperuricemia is an abnormally high level of UA in the blood and may result in arthritis and gout. The prevalence of hyperuricemia has been increasing globally. Epidemiological studies have shown that UA levels are positively correlated with cardiovascular diseases, including hypertension, atherosclerosis, atrial fibrillation (AF), and heart failure (HF). Hyperuricemia promotes the occurrence and development of cardiovascular diseases by regulating molecular signals, such as inflammatory response, oxidative stress, insulin resistance/diabetes, endoplasmic reticulum stress, and endothelial dysfunction. Despite extensive research, the underlying molecular mechanisms are still unclear. Allopurinol, a xanthine oxidase (XO) inhibitor, has been shown to improve cardiovascular outcomes in patients with HF, coronary heart disease (CHD), type 2 diabetes (T2D), and left ventricular hypertrophy (LVH). Whether febuxostat, another XO inhibitor, can improve cardiovascular outcomes as well as allopurinol remains controversial. Furthermore, it is also not clear whether UA-lowering treatment (ULT) can benefit patients with asymptomatic hyperuricemia. In this review, we focus on the latest cellular and molecular findings of cardiovascular disease associated with hyperuricemia and clinical data about the efficacy of ULT in patients with cardiovascular disease.

4.
PLoS One ; 10(4): e0123991, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915902

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobinopathies were the inherited conditions found mostly in African. However, few epidemiological data of these disorders was reported in Equatorial Guinea (EQG). This study aimed to assess the prevalence and healthy effects of G6PD deficiency and hemoglobinopathies among the people on malaria endemic Bioko Island, EQG. MATERIALS AND METHODS: Blood samples from 4,144 unrelated subjects were analyzed for G6PD deficiency by fluorescence spot test (FST), high-resolution melting assay and PCR-DNA sequencing. In addition, 1,186 samples were randomly selected from the 4,144 subjects for detection of hemoglobin S (HbS), HbC, and α-thalassemia deletion by complete blood count, PCR-DNA sequencing and reverse dot blot (RDB). RESULTS: The prevalence of malaria and anemia was 12.6% (522/4,144) and 32.8% (389/1,186), respectively. Overall, 8.7% subjects (359/4,144) were G6PD-deficient by FST, including 9.0% (249/2,758) males and 7.9% (110/1,386) females. Among the 359 G6PD-deficient individuals molecularly studied, the G6PD A- (G202A/A376G) were detected in 356 cases (99.2%), G6PD Betica (T968C/A376G) in 3 cases. Among the 1,186 subjects, 201 cases were HbS heterozygotes, 35 cases were HbC heterozygotes, and 2 cases were HbCS double heterozygotes; 452 cases showed heterozygous α-thalassemia 3.7 kb deletion (-α3.7 kb deletion) and 85 homozygous - α3.7 kb deletion. The overall allele frequencies were HbS 17.1% (203/1186); HbC, 3.1% (37/1186); and -α3.7 kb deletion 52.4% (622/1186), respectively. CONCLUSIONS: High G6PD deficiency in this population indicate that diagnosis and management of G6PD deficiency is necessary on Bioko Island. Obligatory newborn screening, prenatal screening and counseling for these genetic disorders, especially HbS, are needed on the island.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Hemoglobinopatias/epidemiologia , Malária/epidemiologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Doenças Endêmicas/estatística & dados numéricos , Guiné Equatorial , Feminino , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/genética , Hemoglobina C/genética , Hemoglobina Falciforme/genética , Hemoglobinopatias/genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...