Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inflamm Res ; 17: 5741-5762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224659

RESUMO

Background: Cerebral ischaemia-reperfusion injury (CIRI) could worsen the inflammatory response and oxidative stress in brain tissue. According to previous studies, ferulic acid methyl ester (FAME), as the extract with the strongest comprehensive activity in the traditional Chinese medicine Huang Hua oil dot herb, has significant anti-oxidative stress and neuroprotective functions, and can effectively alleviate CIRI, but its mechanism of action is still unclear. Methods: Firstly, the pharmacological effects of FAME were investigated by in vitro oxidative stress and inflammatory experiments. Secondly, evaluate the therapeutic effects of FAME in the treatment of CIRI by brain histopathological staining and cerebral infarct area by replicating the in vivo MACO model. Thirdly, RNA-Seq and network pharmacology were utilized to predict the possible targets and mechanisms of FAME for CIRI at the molecular level. Finally, the expression of key target proteins, as well as the key regulatory relationships were verified by molecular docking visualization, Western Blotting and immunohistochemistry. Results: The results of in vitro experiments concluded that FAME could significantly reduce the content of TNF-α, IL-1ß and ROS, inhibiting COX-2 and iNOS protein expression in cells(p<0.01). FAME was demonstrated to have anti-oxidative stress and anti-inflammatory effects. The results of in vivo experiments showed that after the administration of FAME, the area of cerebral infarction in rats with CIRI was reduced, the content of Bcl-2 and VEGF was increased(p<0.05). Network pharmacology and RNA-Seq showed that the alleviation of CIRI by FAME may be through PI3K-AKT and HIF-1 signaling pathway. Enhanced expression of HIF-1α, VEGF, p-PI3K, p-AKT proteins in the brain tissues of rats in the FAME group was verified by molecular docking and Western Blotting. Conclusion: FAME possesses significant anti-inflammatory and anti-oxidative stress activities and alleviates CIRI through the PI3K/HIF-1α/VEGF signaling pathway.

2.
Biomed Pharmacother ; 179: 117398, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39245000

RESUMO

At present, chemotherapy combined with photodynamic therapy is exerting satisfactory therapeutic effects in the treatment of tumors. Chlorin e6 (Ce6) is a photosensitizer with high efficiency and low dark toxicity. At the same time, elemene (ELE) contains high-efficiency and low-toxicity anti-cancer active ingredients, which can effectively penetrate tumor tissue and inhibit its recovery and proliferation. Due to the poor water solubility of these two drugs, we prepared ELE/Ce6 co-loaded liposomes (Lipo-ELE/Ce6) to improve their water solubility, thereby enhancing the anti-tumor effect. The characterization of Lipo-ELE/Ce6 showed that Lipo-ELE/Ce6 had suitable encapsulation efficiency (EE), particle size, polydispersity (PDI), zeta potential, and good photo-controlled release properties. In vitro, Lipo-ELE/Ce6 effectively inhibited the growth of T24 cells and induced apoptosis, and more importantly, in vivo experiments showed that Lipo-ELE/Ce6 had significant anti-tumor effects, which was significantly better than free drugs. The above results suggest that Lipo-ELE/Ce6 can significantly enhance the induction of apoptosis of non-muscle invasive bladder cancer (NMIBC) by light-controlled release and ROS response.


Assuntos
Apoptose , Clorofilídeos , Preparações de Ação Retardada , Lipossomos , Fármacos Fotossensibilizantes , Porfirinas , Espécies Reativas de Oxigênio , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Linhagem Celular Tumoral , Porfirinas/farmacologia , Porfirinas/química , Porfirinas/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Fotoquimioterapia/métodos , Camundongos Nus , Camundongos , Liberação Controlada de Fármacos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Solubilidade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Neoplasias não Músculo Invasivas da Bexiga
3.
Heliyon ; 10(13): e34214, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39091943

RESUMO

Purpose: This study aimed to investigated the key chemical components and the effect of the aqueous extract of Schisandra sphenanthera (SSAE) on alcoholic liver disease (ALD) and the related molecular mechanism. Methods: This study employed UPLC-Q-TOF-MS/MS to identify the chemical compositions in SSAE. ALD rat model was established through oral administration of white spirit. Transcriptome sequencing, weighted gene co-expression network construction analysis (WGCNA), and network pharmacology were used to predict key compositions and pathways targeted by SSAE for the treatment of ALD. Enzyme-linked immunosorbent assay (ELISA), biochemical kits, hematoxylin-eosin (HE) staining, Western blotting (WB) analysis, and immunohistochemical analysis were used to validate the mechanism of action of SSAE in treating ALD. Results: Active ingredients such as schisandrin A, schisandrol A, and schisandrol B were found to regulate the PI3K/AKT/IKK signaling pathway. Compared to the model group, the SSAE group demonstrated significant improvements in cellular solidification and tissue inflammation in the liver tissues of ALD model rats. Additionally, SSAE regulated the levels of a spartate aminotransferase (AST), alanine aminotransferase (ALT), alcohol dehydrogenase (ADH), and aldehyde Dehydrogenase (ALDH) in serum (P < 0.05); Western blotting and immunohistochemical analyses showed that the expression levels of phosphorylated PI3K, AKT, IKK, NFκB, and FOXO1 proteins were significantly reduced in liver tissues (P < 0.05), whereas the expression level of Bcl-2 proteins was significantly increased (P < 0.05). Conclusion: The active components of SSAE were schisandrin A, schisandrol A, and schisandrol B, which regulated the phosphorylation levels of PI3K, AKT, IKK, and NFκB and the expression of FOXO1 protein and upregulated the expression of Bcl-2 protein in the liver tissues of ALD rats. These findings indicate that SSAE acts against ALD partly through the PI3K-AKT-IKK signaling pathway. This study provided a reference for future research and treatment of ALD and the development of novel natural hepatoprotective drugs.

4.
Biomed Pharmacother ; 177: 117118, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002440

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors in the contemporary era, representing a significant global health concern. Early HCC patients have mild symptoms or are asymptomatic, which promotes the onset and progression of the disease. Moreover, advanced HCC is insensitive to chemotherapy, making traditional clinical treatment unable to block cancer development. Sorafenib (SFB) is a first-line targeted drug for advanced HCC patients with anti-angiogenesis and anti-tumor cell proliferation effects. However, the efficacy of SFB is constrained by its off-target distribution, rapid metabolism, and multi-drug resistance. In recent years, nanoparticles based on a variety of materials have been demonstrated to enhance the targeting and therapeutic efficacy of SFB against HCC. Concurrently, the advent of joint drug delivery systems has furnished crucial empirical evidence for reversing SFB resistance. This review will summarize the application of nanotechnology in the field of HCC treatment over the past five years. It will focus on the research progress of SFB delivery systems combined with multiple therapeutic modalities in HCC treatment.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas , Sorafenibe , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Sorafenibe/administração & dosagem , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Animais , Nanopartículas , Resistencia a Medicamentos Antineoplásicos
5.
Drug Des Devel Ther ; 18: 3089-3112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050804

RESUMO

Purpose: Yinhua Gout Granules (YGG) is a traditional Chinese medicine preparation with a variety of pharmacological effects, and its clinical efficacy in the treatment of gouty arthritis (GA) has been fully confirmed. However, the pharmacodynamic basis of YGG and its anti-inflammatory mechanism of action in GA are unknown. The objective of this study was to identify the active components and molecular mechanisms of YGG in the treatment of GA. Methods: Ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) and network pharmacology were used to identify and predict the potential active ingredients and related signaling pathways. Then, we revealed the anti-GA effects of YGG based on pharmacodynamic experiments in GA rats. Finally, we integrated transcriptomics and network pharmacology to elucidate the potential mechanism of action and verified the putative mechanism by molecular docking, immunohistochemical (IHC) and Western blot. Results: We have identified 10 major active components of YGG that may have anti-GA effects, such as ferulic acid, rutin, luteolin, etc. Using molecular docking, we found that 10 major compounds could bind well to TNF, PTGS2, IL-6, IL1ß, NOS2 and PTGS1, and the binding energies were all less than -5 kcal/mol. Animal studies have shown that YGG can improve joint inflammation and inflammatory cell infiltration, reduce serum UA, BUN and Cr levels (p<0.01), and decrease IL-1ß, IL-6, TNF-α, COX-2 and PGE2 levels in synovial tissue (p<0.01), which are associated with the pathogenesis of GA. IHC and Western blot results showed that YGG could regulate TLR4/MYD88/NF-κB pathway to inhibit the inflammatory response induced by GA. Conclusion: This study found that YGG could not only improve the disease of GA by inhibiting the production of UA in the body, but also target the regulation of TLR4/MYD88/NF-κB signaling pathway through a variety of active components to achieve effective therapeutic effects on GA.


Assuntos
Artrite Gotosa , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Ratos Sprague-Dawley , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Artrite Gotosa/patologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Animais , Ratos , Masculino , Transcriptoma/efeitos dos fármacos , Simulação de Acoplamento Molecular , Medicina Tradicional Chinesa , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Cromatografia Líquida de Alta Pressão
6.
Int J Nanomedicine ; 19: 7273-7305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050871

RESUMO

Dried toad skin (TS) and toad venom (TV) are the dried skin of the Bufo bufo gargarizans Cantor and the Bufo melanostictus Schneider, which remove the internal organs and the white secretions of the skin and retroauricular glands. Since 2005, cinobufacini preparations have been approved by the State Food and Drug Administration for use as adjuvant therapies in the treatment of various advanced cancers. Meanwhile, bufalenolides has been identified as the main component of TS/TV, exhibiting antitumor activity, inducing apoptosis of cancer cells and inhibiting cancer cell proliferation or metastasis through a variety of signaling pathways. However, clinical agents frequently face limitations such as inherent toxicity at high concentrations and insufficient tumor targeting. Additionally, the development and utilization of these active ingredients are hindered by poor water solubility, low bioavailability, and rapid clearance from the bloodstream. To address these challenges, the design of a targeted drug delivery system (TDDS) aims to enhance drug bioavailability, improve targeting within the body, increase drug efficacy, and reduce adverse reactions. This article reviews the TDDS for TS/TV, and their active components, including passive, active, and stimuli-responsive TDDS, to provide a reference for advancing their clinical development and use.


Assuntos
Venenos de Anfíbios , Bufanolídeos , Pele , Animais , Venenos de Anfíbios/química , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/farmacocinética , Humanos , Pele/efeitos dos fármacos , Pele/química , Bufanolídeos/química , Bufanolídeos/farmacologia , Bufanolídeos/farmacocinética , Bufanolídeos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Bufo bufo , Bufonidae , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Neoplasias/tratamento farmacológico , Disponibilidade Biológica
7.
Front Pharmacol ; 15: 1412816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978983

RESUMO

Background: Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) and Schisandra sphenanthera Rehder & E.H. Wilson are traditional edible and medicinal hepatoprotective botanical drugs. Studies have shown that the combination of two botanical drugs enhanced the effects of treating acute liver injury (ALI), but the synergistic effect and its action mechanisms remain unclear. This study aimed to investigate the synergistic effect and its mechanism of the combination of Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) (PM) and Schisandra sphenanthera Rehder & E.H. Wilson (SS) in the treatment of ALI. Methods: High performance liquid chromatography (HPLC) were utilized to conduct the chemical interaction analysis. Then the synergistic effects of botanical hybrid preparation of PM-SS (BHP PM-SS) against ALI were comprehensively evaluated by the CCl4 induced ALI mice model. Afterwards, symptom-oriented network pharmacology, transcriptomics and metabolomics were applied to reveal the underlying mechanism of action. Finally, the key target genes were experimentally by RT-qPCR. Results: Chemical analysis and pharmacodynamic experiments revealed that BHP PM-SS was superior to the single botanical drug, especially at 2:3 ratio, with a better dissolution rate of active ingredients and synergistic anti-ALI effect. Integrated symptom-oriented network pharmacology combined with transcriptomics and metabolomics analyses showed that the active ingredients of BHP PM-SS could regulate Glutathione metabolism, Pyrimidine metabolism, Arginine biosynthesis and Amino acid sugar and nucleotide sugar metabolism, by acting on the targets of AKT1, TNF, EGFR, JUN, HSP90AA1 and STAT3, which could be responsible for the PI3K-AKT signaling pathway, MAPK signaling pathway and Pathway in cancer to against ALI. Conclusion: Our study has provided compelling evidence for the synergistic effect and its mechanism of the combination of BHP PM-SS, and has contributed to the development and utilization of BHP PM-SS dietary supplements.

8.
Int J Biol Macromol ; 253(Pt 6): 127219, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802456

RESUMO

Curcumin (CUR) has good antitumor effects, but its poor aqueous solubility severely limits its clinical application and the systemic nonspecific distribution of the free drug in tumor patients is a key therapeutic challenge. In order to overcome the limitations of free drugs and improve the therapeutic efficacy, we developed novel galactosylated chitosan (GC)-modified nanoparticles (GC@NPs) based on poly (ethylene glycol) methyl ether-block-poly (lactide-co-glycolide) (PEG-PLGA), which can target asialoglycoprotein receptor (ASGPR) expressed on hepatocellular carcinoma cells and have excellent biocompatibility. The results showed that the drug loading (DL) of CUR was approximately 4.56 %. A favorable biosafety profile was maintained up to concentrations of 500 µg/mL. Furthermore, in vitro cellular assays showed that GC@NPs could be efficiently internalized by HepG2 cells via ASGPR-mediated endocytosis and successfully released CUR for chemotherapy. More importantly, in vivo anti-tumor experiments revealed that GC@NPs were able to accumulate effectively within tumor sites through EPR effect and ASGPR-mediated endocytosis, leading to superior inhibition of tumor growth compared to free CUR. Overall, GC@NPs are a promising CUR nanocarrier for enhanced tumor therapy with a good biosafety profile.


Assuntos
Carcinoma Hepatocelular , Quitosana , Curcumina , Neoplasias Hepáticas , Nanopartículas , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Nanopartículas/uso terapêutico , Tamanho da Partícula , Portadores de Fármacos
9.
Molecules ; 28(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37836633

RESUMO

BACKGROUND: Phloretin (Phl) is a flavonoid compound that contains multiple phenolic hydroxyl groups. It is found in many plants, such as apple leaves, lychee pericarp, and begonia, and has various biological activities, such as antioxidant and anticancer effects. The strong hydrogen bonding between Phl molecules results in poor water solubility and low bioavailability, and thus the scope of the clinical application of Phl is limited. Therefore, it is particularly important to improve the water solubility of Phl for its use to further combat or alleviate skin aging and oxidative damage and develop antioxidant products for the skin. The purpose of this study was to develop and evaluate a phloretin transfersome gel (PTG) preparation for transdermal drug delivery to improve the bioavailability of the drug and delay aging. METHODS: Phloretin transfersomes (Phl-TFs) were prepared and optimized by the thin-film dispersion-ultrasonication method. Phl-TFs were characterized by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The Log P method was used to determine the solubility of the Phl-TFs. The skin penetration ability of the prepared PTG was evaluated using the Franz diffusion cell method. In addition, the in vivo pharmacokinetics of PTG were studied in rats, and an antioxidant activity investigation was conducted using a D-gal rat model. RESULTS: Phl-TFs were successfully prepared with a Soybean Phosphatidylcholine (SPC)/CHOL ratio of 2.7:1 w/v, a phloretin concentration of 1.3 mg/mL, a hydration time of 46 min, an ultrasound time of 5 min, and an ultrasound power of 180 W. The Log P was 2.26, which was significantly higher than that of phloretin (p < 0.05, paired t test). The results of the in vitro penetration test demonstrated that the cumulative skin penetration of the Phl-TFs after 24 h was 842.73 ± 20.86 µg/cm2. The data from an in vivo pharmacokinetic study showed that the Cmax and AUC of PTG were 1.39- and 1.97-fold higher than those of the phloretin solution gel (PSG), respectively (p < 0.05, paired t test). The experimental results in aging rats showed that PTG had a better antioxidant effect. CONCLUSIONS: Phl-TFs and PTG preparations with a good shape, safety, and stability were successfully prepared. In vivo pharmacokinetics and preliminary antioxidant experiments further verified the transdermal penetration and antioxidant activity of the phloretin transdermal drug delivery preparation, providing an experimental basis for its further development.


Assuntos
Antioxidantes , Floretina , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/análise , Administração Cutânea , Pele/química , Água/análise
10.
Front Pharmacol ; 14: 1113810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992829

RESUMO

Objective: To investigate the effects and mechanisms of Paeoniae radix rubra-Angelicae sinensis radix (P-A) drug pair in the treatment of rheumatoid arthritis (RA). Methods: Mass spectrometry was employed to accurately characterize the main components of the P-A drug pair. Network pharmacology was used to analyze the main components and pathways of the P-A drug pair in the treatment of RA, and Discovery Studio software was used to molecularly dock the key proteins on the pathway with their corresponding compounds. The levels of serum TNF-a, IL-1ß, and IL-6 were measured by enzyme linked immunosorbent assay (ELISA). The histopathology of the ankle joint was observed by hematoxylin-eosin (HE) staining, and the positive expression of p-PI3K, p-IKK, p-NF-κB, and p-AKT in the synovial tissue of the ankle joint was detected by immunohistochemical analysis. Finally, the expression of PI3K, IKK, and AKT and their phosphorylation levels were determined by western blot in each group of rats. Results: Network pharmacology combined with molecular docking analysis revealed that the pharmacodynamic mechanism of the P-A drug pair for the treatment of RA may be related to the contents of caffeic acid, quercetin, paeoniflorin, and baicalein in the regulation of the expression of the PI3K/AKT/NF-κB signaling pathway and the targets of PIK3CA, PIK3R1, AKT1, HSP90AA1 and IKBKB in the pathway. Compared with the model group, the P-A drug pair significantly improved the pathological changes of the synovial tissue and reduced feet swelling in RA model rats. Moreover, it regulated the levels of TNF-α, IL-1ß, and IL-6 in serum (p < 0.05). The results of the immunohistochemical analysis and western blot showed that the expression of PI3K, IKK, NF-κB, and AKT decreased after phosphorylation in the synovial tissue (p < 0.05). Conclusion: The P-A drug pair exhibited an inhibitory effect on the hyperactivation of the PI3K/AKT/NF-κB signaling pathway in the synovial membrane of RA rats. The mechanism may be related to the downregulation of the phosphorylation levels PI3K, IKK, NF-κB, and AKT, which in turn decreased inflammatory cell infiltration and synovial membrane proliferation.

11.
Zhongguo Zhong Yao Za Zhi ; 48(4): 966-977, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872267

RESUMO

The present study optimized the ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair by network pharmacology and Box-Behnken method. Network pharmacology and molecular docking were used to screen out and verify the potential active components of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus, and the process evaluation indexes were determined in light of the components of the content determination under Ziziphi Spinosae Semen and Schisandrae Sphenantherae Fructus in the Chinese Pharmacopoeia(2020 edition). The analytic hierarchy process(AHP) was used to determine the weight coefficient of each component, and the comprehensive score was calculated as the process evaluation index. The ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus was optimized by the Box-Behnken method. The core components of the Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair were screened out as spinosin, jujuboside A, jujuboside B, schisandrin, schisandrol, schisandrin A, and schisandrin B. The optimal extraction conditions obtained by using the Box-Behnken method were listed below: extraction time of 90 min, ethanol volume fraction of 85%, and two times of extraction. Through network pharmacology and molecular docking, the process evaluation indexes were determined, and the optimized process was stable, which could provide an experimental basis for the production of preparations containing Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus.


Assuntos
Farmacologia em Rede , Extratos Vegetais , Tecnologia Farmacêutica , Etanol , Simulação de Acoplamento Molecular , Sementes/química , Ziziphus/química , Extratos Vegetais/química , Schisandra/química , Frutas/química
12.
J Nanobiotechnology ; 20(1): 509, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463199

RESUMO

Norcantharidin (NCTD) is a demethylated derivative of cantharidin (CTD), the main anticancer active ingredient isolated from traditional Chinese medicine Mylabris. NCTD has been approved by the State Food and Drug Administration for the treatment of various solid tumors, especially liver cancer. Although NCTD greatly reduces the toxicity of CTD, there is still a certain degree of urinary toxicity and organ toxicity, and the poor solubility, short half-life, fast metabolism, as well as high venous irritation and weak tumor targeting ability limit its widespread application in the clinic. To reduce its toxicity and improve its efficacy, design of targeted drug delivery systems based on biomaterials and nanomaterials is one of the most feasible strategies. Therefore, this review focused on the studies of targeted drug delivery systems combined with NCTD in recent years, including passive and active targeted drug delivery systems, and physicochemical targeted drug delivery systems for improving drug bioavailability and enhancing its efficacy, as well as increasing drug targeting ability and reducing its adverse effects.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Neoplasias , Estados Unidos , Sistemas de Liberação de Medicamentos , Meia-Vida , Disponibilidade Biológica , Neoplasias/tratamento farmacológico
13.
Metabolites ; 12(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36295858

RESUMO

Ulcerative colitis (UC) is a chronic recurrent inflammatory disease of the gastrointestinal tract. Recent studies demonstrate that the phenolic tannin paeonol (Pae) attenuates UC in mouse models by downregulating inflammatory factors. However, its molecular mechanism for UC treatment has not been explored from the perspective of the gut microbiota and metabolomics. In this study, we investigated the effects of Pae on colonic inflammation, intestinal microbiota and fecal metabolites in 3% dextran sodium sulfate (DSS) induced BALB/c UC mice. Pae significantly improved the clinical index, relieved colonic damage, reduced cytokine levels, and restored the integrity of the intestinal epithelial barrier in UC mice. In addition, Pae increased the abundance of gut microbiota, partially reversed the disturbance of intestinal biota composition, including Lactobacillus and Bacteroides, and regulated metabolite levels, such as bile acid (BA) and short-chain fatty acid (SCFA). In conclusion, our study provides new insight on Pae remission of UC.

14.
Int J Nanomedicine ; 17: 5027-5046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303804

RESUMO

Background: Ulcerative colitis (UC) is one of the intractable diseases recognized by the World Health Organization, and paeonol has been proven to have therapeutic effects. However, the low solubility of paeonol limits its clinical application. To prepare and optimize paeonol liposome, study its absorption mechanism and the anti-inflammatory activity in vitro and in vivo, in order to provide experimental basis for the further development of paeonol into an anti-inflammatory drug in the future. Methods: Paeonol loaded liposomes were prepared and optimized by thin film dispersion-ultrasonic method. The absorption mechanism of paeonol-loaded liposomes was studied by pharmacokinetics, in situ single-pass intestinal perfusion and Caco-2 cell monolayer model, the anti-inflammatory activity was studied in a mouse ulcerative model. Results: Box-Behnken response surface methodology permits to screen the best formulations. The structural and morphological characterization showed that paeonol was entrapped inside the bilayer in liposomes. Pharmacokinetic studies found that the AUC0-t of Pae-Lips was 2.78 times than that of paeonol suspension, indicating that Pae-Lips significantly improved the absorption of paeonol. In situ single intestinal perfusion and Caco-2 monolayer cell model results showed that paeonol was passively transported and absorbed, and was the substrate of P-gp, MRP2 and BCRP, and the Papp value of Pae-Lips was significantly higher than that of paeonol. In vitro and in vivo anti-inflammatory experiments showed that compared with paeonol, Pae-Lips exhibited excellent anti-inflammatory activity. Conclusion: In this study, Pae-Lips were successfully prepared to improve the oral absorption of paeonol. Absorption may involve passive diffusion and efflux transporters. Moreover, Pae-Lips have excellent anti-inflammatory activity in vitro and in vivo, which preliminarily clarifies the feasibility of further development of Pae-Lips into oral anti-inflammatory drugs.


Assuntos
Lipossomos , Proteínas de Neoplasias , Humanos , Camundongos , Animais , Lipossomos/química , Células CACO-2 , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Modelos Animais de Doenças
15.
J Zhejiang Univ Sci B ; 23(8): 682-698, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35953761

RESUMO

OBJECTIVES: To determine the potential molecular mechanisms underlying the therapeutic effect of curcumin on hepatocellular carcinoma (HCC) by network pharmacology and experimental in vitro validation. METHODS: The predictive targets of curcumin or HCC were collected from several databases. the identified overlapping targets were crossed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) platform. Two of the candidate pathways were selected to conduct an experimental verification. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay was used to determine the effect of curcumin on the viability of HepG2 and LO2 cells. The apoptosis and autophagy of HepG2 cells were respectively detected by flow cytometry and transmission electron microscopy. Besides, western blot and real-time polymerase chain reaction (PCR) were employed to verify the p53 apoptotic pathway and adenosine 5'-monophosphate (AMP)|-activated protein kinase (AMPK) autophagy pathway. HepG2 cells were pretreated with pifithrin-|α (PFT-|α) and GSK690693 for further investigation. RESULTS: The 167 pathways analyzed by KEGG included apoptosis, autophagy, p53, and AMPK pathways. The GO enrichment analysis demonstrated that curcumin was involved in cellular response to drug, regulation of apoptotic pathway, and so on. The in vitro experiments also confirmed that curcumin can inhibit the growth of HepG2 cells by promoting the apoptosis of p53 pathway and autophagy through the AMPK pathway. Furthermore, the protein and messenger RNA (mRNA) of the two pathways were downregulated in the inhibitor-pretreated group compared with the experimental group. The damage-regulated autophagy modulator (DRAM) in the PFT-|α-pretreated group was downregulated, and p62 in the GSK690693-pretreated group was upregulated. CONCLUSIONS: Curcumin can treat HCC through the p53 apoptotic pathway and the AMPK/Unc-51-like kinase 1 (ULK1) autophagy pathway, in which the mutual transformation of autophagy and apoptosis may occur through DRAM and p62.


Assuntos
Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Curcumina/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Farmacologia em Rede , Proteína Supressora de Tumor p53/metabolismo
16.
J Transl Med ; 20(1): 135, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303878

RESUMO

Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.


Assuntos
Neoplasias , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Humanos , Neoplasias/terapia , Prognóstico , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
17.
Drug Des Devel Ther ; 16: 83-105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35027819

RESUMO

PURPOSE: Aralia taibaiensis, a medicinal food plant, and total saponins from its root bark extract inhibit α-glucosidase activity, which is associated with type 2 diabetes; however, the inhibitory mechanism is unknown. Furthermore, a green extraction technique superior to conventional hot reflux extraction (HRE) is needed for the rapid and easy extraction of A. taibaiensis total saponins (TSAT) to exploit and utilize this resource. Our aim was to develop a green extraction method for obtaining TSAT and to investigate the mechanism by which TSAT inhibits α-glucosidase. MATERIALS AND METHODS: In this study, the ultrasound-assisted extraction (UAE) process was optimized using a Box-Behnken design, and the extraction mechanism was investigated using scanning electron microscopy (SEM). High-performance liquid chromatography (HPLC) was used for qualitative and quantitative analyses of TSAT. In vitro glycosylation assays, enzyme kinetics, fluorescence spectroscopy measurements, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR) and molecular docking techniques were used to investigate the mechanism by which the A. taibaiensis active ingredients inhibit α-glucosidase. RESULTS: The optimal parameters for the extraction yield were obtained as an ethanol concentration of 73%, ultrasound time of 34 min, ultrasound temperature of 61 °C and solid-liquid ratio of 16 g/mL, which were better than HRE. The SEM analysis showed that UAE effectively disrupted plant cells, thus increasing the TSAT yield. In vitro α-glucosidase inhibition experiments showed that both TSAT and its active ingredient, araloside A, inhibited α-glucosidase activity by binding to α-glucosidase, thereby changing the conformation and microenvironment of α-glucosidase to subsequently inhibit enzyme activity. CONCLUSION: The optimal extraction conditions identified here established a basis for future scale-up of ultrasound extraction parameters with the potential for obtaining maximum yields. In vitro enzyme inhibition experiments investigated the mechanism of the TSAT interaction with α-glucosidase and further explored whether araloside A may be the main contributor to the good inhibition of α-glucosidase activity by TSAT.


Assuntos
Aralia/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Saponinas/química , Saponinas/isolamento & purificação , Sonicação , Cromatografia Líquida de Alta Pressão , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
18.
J Ethnopharmacol ; 282: 114650, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34536515

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese Medicine, Rehmannia glutinosa (Gaertn.) DC., as the principle herb of ShengDiHuang Decotion (SDHD), has the effect of cooling blood and hemostasis, and tonifying the yin and kidney. Rheum L., as adjuvant herbs, assist Rehmannia glutinosa (Gaertn.) DC. to promote blood circulation to remove blood stasis. AIM OF STUDY: To study the mechanism of Rhein (RH) involved in the promotion of Rehmannioside D (RD) absorption by pharmacokinetic studies, single-pass intestinal perfusion, Caco-2 cell models, molecular docking technique and western blotting. MATERIALS AND METHODS: Initially, the intestinal absorption of RD in the presence or absence of RH was conducted through pharmacokinetic studies. Thereafter, the intestinal absorption of RD and RH was studied using the single-pass intestinal perfusion and Caco-2 cell models. Finally, using molecular docking technique and western blotting. RESULTS: We found that the promotion of RD absorption by RH was mediated by breast cancer resistance and multidrug resistance-associated protein 2, thereby affecting the permeability of the intestinal epithelium. Additionally, RH and RD can competitively bind to breast cancer resistance and multidrug resistance-associated protein 2, and that RH inhibits the expression of breast cancer resistance and multidrug resistance-associated protein 2 in the ileum to promote the intestinal absorption of RD. CONCLUSION: This study reveals the mechanisms associated with the RH-mediated promotion of RD absorption and provides a basis for further exploring the synergistic effect of Rehmannia glutinosa (Gaertn.) DC and rhubarb.


Assuntos
Antraquinonas , Animais , Humanos , Masculino , Ratos , Antraquinonas/química , Antraquinonas/farmacocinética , Área Sob a Curva , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Meia-Vida , Modelos Moleculares , Estrutura Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Conformação Proteica , Distribuição Aleatória , Ratos Sprague-Dawley
19.
Drug Des Devel Ther ; 15: 4025-4042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594101

RESUMO

AIM: Aralia taibaiensis is a natural medicinal and food plant that is rich in triterpenoid saponins with hypoglycaemic, antioxidant, hepatoprotective, anti-gastric ulcer and anti-inflammatory effects. This study has significance in terms of the antioxidant, anti-aging and organ protective effects of Aralia taibaiensis total saponins (TSAT) in D-galactose-induced aging rats. METHODS: The saponin composition of TSAT was determined and quantified by high performance liquid chromatography (HPLC). We consolidated the antioxidant and enzyme inhibitory activities of TSAT in vitro and assessed the effects of TSAT on daily mobility, body weight, behaviour, organ indices, oxidation-related indices and pathological changes in aging rats. RESULTS: In vitro experiments showed that TSAT had a scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), tyrosinase, hydroxyl radicals (HO•) and superoxide radicals (•O2-) and was closely related to the dose of TSAT. In vivo experiments showed that after 8 weeks of continuous gavage administration, the rats gradually recovered their body weight, daily activity ability, learning and memory ability and organ index and effectively improved D-gal-induced organ injury. Specifically, TSAT significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) and significantly decreased malondialdehyde (MDA) levels in the serum, brain, heart, lung, spleen and kidney of aging rats compared to the model group. In addition, TSAT significantly inhibited the D-gal-induced upregulation of hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. The histopathological results showed that TSAT reversed D-gal-induced damage to the brain, heart, lung, kidney, liver and spleen to varying degrees. CONCLUSION: TSAT is a high-quality natural product with antioxidant and anti-aging properties that can alleviate D-gal-induced aging damage in rats.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Aralia/química , Saponinas/farmacologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Sprague-Dawley , Saponinas/administração & dosagem , Saponinas/isolamento & purificação
20.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4757-4764, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34581086

RESUMO

A spectrum-activity relationship is established with high performance liquid chromatography(HPLC) fingerprints and the in vitro antioxidant activity to improve the quality evaluation system of Aralia taibaiensis. The HPLC profiles of 12 batches of samples were collected, and the similarity evaluation, heat map analysis and principal component analysis were conducted for the chemometric study of the fingerprint data. Combined with grey correlation analysis, the contributions of the common peaks in the fingerprints to the antioxidant activity were clarified, and the important peaks reflecting the efficacy were identified. The results showed that 17 common peaks were found in 12 batches of A. taibaiensis samples, and 6 of them were identified as saponins. Similarity evaluation, heat map analysis and principal component analysis roughly classified the A. taibaiensis herbs into two categories, i.e.,(1) S1-S10, S12 and(2) S11. Twelve batches of samples showed different antioxidant activities in a dose-dependent manner. In particular, S9 had the strongest antioxidant activity, while S11 was the weakest in antioxidant capacity, which was basically consistent with the overall score results. The results of grey correlation analysis demonstrated that the 17 common peaks scavenged DPPH radicals in the following order: X_3>X_(17)>X_4>X_8>X_7>X_(13)>X_2>X_6>X_(11)>X_(10)>X_(16)>X_(12)>X_9>X_5>X_(14)>X_1>X_(15), and scavenged ABTS radicals in the order of X_4>X_3>X_7>X_8>X_2>X_(17)>X_(13)>X_6>X_(16)>X_(11)>X_5>X_(12)>X_(10)>X_9>X_(14)>X_1>X_(15). Among them, X_3, X_4, X_7(araloside C), X_8 and X_(17) were the important peaks reflecting the efficacy of A. taibaiensis, which were basically consistent with those contained in the principal component 1. In this study, the correlation between the HPLC fingerprints of 12 batches of A. taibaiensis and its antioxidant activity provides a reference for the Q-marker screening and quality control of A. taibaiensis.


Assuntos
Aralia , Medicamentos de Ervas Chinesas , Saponinas , Antioxidantes , Cromatografia Líquida de Alta Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA