Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 14(2): 667-681, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322327

RESUMO

Studies have suggested that the nucleus accumbens (NAc) is implicated in the pathophysiology of major depression; however, the regulatory strategy that targets the NAc to achieve an exclusive and outstanding anti-depression benefit has not been elucidated. Here, we identified a specific reduction of cyclic adenosine monophosphate (cAMP) in the subset of dopamine D1 receptor medium spiny neurons (D1-MSNs) in the NAc that promoted stress susceptibility, while the stimulation of cAMP production in NAc D1-MSNs efficiently rescued depression-like behaviors. Ketamine treatment enhanced cAMP both in D1-MSNs and dopamine D2 receptor medium spiny neurons (D2-MSNs) of depressed mice, however, the rapid antidepressant effect of ketamine solely depended on elevating cAMP in NAc D1-MSNs. We discovered that a higher dose of crocin markedly increased cAMP in the NAc and consistently relieved depression 24 h after oral administration, but not a lower dose. The fast onset property of crocin was verified through multicenter studies. Moreover, crocin specifically targeted at D1-MSN cAMP signaling in the NAc to relieve depression and had no effect on D2-MSN. These findings characterize a new strategy to achieve an exclusive and outstanding anti-depression benefit by elevating cAMP in D1-MSNs in the NAc, and provide a potential rapid antidepressant drug candidate, crocin.

2.
Small ; 18(5): e2105767, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34881507

RESUMO

Nitrogen-doped carbon materials with abundant defects and strong potassium adsorption ability have been recognized as potential anodes for potassium ion batteries (PIBs). However, the limited content and uncontrolled type of nitrogen-doped sites hinder the further performance improvement of PIBs. Herein, this work proposes nitrogen phosphorous co-doped hollow carbon nanofibers (PNCNFs) derived from high-energy metal-organic frameworks (MOFs) with an ultra-high nitrogen content of 19.52 wt% and a high portion of more reactive pyridinic N sites. Furthermore, the highly open architecture exploded by released gases from high-energy MOFs provides sufficient edge sites to settle the N atoms and further form pyridinic N sites induced by phosphorous dopants. The resulting PNCNFs achieve excellent potassium ion storage performance with high reversible capacity (466.2 mAh g-1 ), superb rate capability (244.4 mAh g-1 at 8 A g-1 ), and excellent cycling performance (294.6 mAh g-1 after 3250 cycles). The density functional theory calculation reveals that the N/P defects enhance the potassium adsorption ability and improve the conductivity.

3.
Small ; 17(19): e2100135, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33797201

RESUMO

3D carbon-based materials with multiscale hierarchy are promising electrode materials for electrochemical energy storage and conversion applications, but the synthesis in an efficient and large-scale way is still a great challenge. Herein, a carbon nanorod-assembled 3D superstructure is facilely fabricated by morphology-preserving conversion of a metal-organic framework (MOF) nanorod-assembled superstructure. The MOF superstructure can be fabricated in one-pot synthesis with high reproducibility and high yield by precise control of the MOF nucleation and growth. Its derived carbon inherits the nanorod-assembled superstructure and possesses abundant micropores and nitrogen doping, which can serve as a high-performance anode material for fast potassium storage. The superiority of the superstructure and the synergism of micropore capturing and nitrogen anchoring are verified both experimentally and theoretically.

4.
Small ; 16(2): e1905075, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31814261

RESUMO

Transition-metal phosphides have flourished as promising candidates for oxygen evolution reaction (OER) electrocatalysts. Herein, it is demonstrated that the electrocatalytic OER performance of CoP can be greatly improved by constructing a hybrid CoP/TiOx heterostructure. The CoP/TiOx heterostructure is fabricated using metal-organic framework nanocrystals as templates, which leads to unique hollow structures and uniformly distributed CoP nanoparticles on TiOx . The strong interactions between CoP and TiOx in the CoP/TiOx heterostructure and the conductive nature of TiOx with Ti3+ sites endow the CoP-TiOx hybrid material with high OER activity comparable to the state-of-the-art IrO2 or RuO2 OER electrocatalysts. In combination with theoretical calculations, this work reveals that the formation of CoP/TiOx heterostructure can generate a pathway for facile electron transport and optimize the water adsorption energy, thus promoting the OER electrocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...