Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fluid Mech ; 9282021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34671171

RESUMO

The force balance of rotating Rayleigh-Bénard convection regimes is investigated using direct numerical simulation on a laterally periodic domain, vertically bounded by no-slip walls. We provide a comprehensive view of the interplay between governing forces both in the bulk and near the walls. We observe, as in other prior studies, regimes of cells, convective Taylor columns, plumes, large-scale vortices (LSVs) and rotation-affected convection. Regimes of rapidly rotating convection are dominated by geostrophy, the balance between Coriolis and pressure-gradient forces. The higher-order interplay between inertial, viscous and buoyancy forces defines a subdominant balance that distinguishes the geostrophic states. It consists of viscous and buoyancy forces for cells and columns, inertial, viscous and buoyancy forces for plumes, and inertial forces for LSVs. In rotation-affected convection, inertial and pressure-gradient forces constitute the dominant balance; Coriolis, viscous and buoyancy forces form the subdominant balance. Near the walls, in geostrophic regimes, force magnitudes are larger than in the bulk; buoyancy contributes little to the subdominant balance of cells, columns and plumes. Increased force magnitudes denote increased ageostrophy near the walls. Nonetheless, the flow is geostrophic as the bulk. Inertia becomes increasingly more important compared to the bulk, and enters the subdominant balance of columns. As the bulk, the near-wall flow loses rotational constraint in rotation-affected convection. Consequently, kinetic boundary layers deviate from the expected behaviour from linear Ekman boundary layer theory. Our findings elucidate the dynamical balances of rotating thermal convection under realistic top/bottom boundary conditions, relevant to laboratory settings and large-scale natural flows.

2.
Phys Rev Lett ; 125(21): 214501, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274985

RESUMO

We perform direct numerical simulations of rotating Rayleigh-Bénard convection (RRBC) of fluids with low (Pr=0.1) and high (Pr≈5) Prandtl numbers in a horizontally periodic layer with no-slip bottom and top boundaries. No-slip boundaries are known to actively promote the formation of plumelike vertical disturbances, through so-called Ekman pumping, that control the ambient flow at sufficiently high rotation rates. At both Prandtl numbers, we demonstrate the presence of competing large-scale vortices (LSVs) in the bulk. Strong buoyant forcing and rotation foster the quasi-two-dimensional turbulent state of the flow that leads to the upscale transfer of kinetic energy that forms the domain-filling LSV condensate. The Ekman plumes from the boundary layers are sheared apart by the large-scale flow, yet we find that their energy feeds the upscale transfer. Our results of RRBC simulations substantiate the emergence of large-scale flows in nature regardless of the specific details of the boundary conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA