Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 325(5): F656-F668, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706232

RESUMO

The circadian clock protein basic helix-loop-helix aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a transcription factor that impacts kidney function, including blood pressure (BP) control. Previously, we have shown that male, but not female, kidney-specific cadherin Cre-positive BMAL1 knockout (KS-BMAL1 KO) mice exhibit lower BP compared with littermate controls. The goal of this study was to determine the BP phenotype and immune response in male KS-BMAL1 KO mice in response to a low-K+ high-salt (LKHS) diet. BP, renal inflammatory markers, and immune cells were measured in male mice following an LKHS diet. Male KS-BMAL1 KO mice had lower BP following the LKHS diet compared with control mice, yet their circadian rhythm in pressure remained unchanged. Additionally, KS-BMAL1 KO mice exhibited lower levels of renal proinflammatory cytokines and immune cells following the LKHS diet compared with control mice. KS-BMAL1 KO mice were protected from the salt-sensitive hypertension observed in control mice and displayed an attenuated immune response following the LKHS diet. These data suggest that BMAL1 plays a role in driving the BP increase and proinflammatory environment that occurs in response to an LKHS diet.NEW & NOTEWORTHY We show here, for the first time, that kidney-specific BMAL1 knockout mice are protected from blood pressure (BP) increases and immune responses to a salt-sensitive diet. Other kidney-specific BMAL1 knockout models exhibit lower BP phenotypes under basal conditions. A salt-sensitive diet exacerbates this genotype-specific BP response, leading to fewer proinflammatory cytokines and immune cells in knockout mice. These data demonstrate the importance of distal segment BMAL1 in BP and immune responses to a salt-sensitive environment.


Assuntos
Fatores de Transcrição ARNTL , Hipertensão , Animais , Masculino , Camundongos , Fatores de Transcrição ARNTL/metabolismo , Pressão Sanguínea/fisiologia , Ritmo Circadiano/fisiologia , Citocinas , Dieta , Hipertensão/genética , Hipertensão/prevenção & controle , Rim/metabolismo , Camundongos Knockout , Cloreto de Sódio na Dieta
2.
Function (Oxf) ; 4(2): zqad001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778748

RESUMO

Brain and muscle ARNT-like 1 (BMAL1) is a core circadian clock protein and transcription factor that regulates many physiological functions, including blood pressure (BP). Male global Bmal1 knockout (KO) mice exhibit ∼10 mmHg reduction in BP, as well as a blunting of BP rhythm. The mechanisms of how BMAL1 regulates BP remains unclear. The adrenal gland synthesizes hormones, including glucocorticoids and mineralocorticoids, that influence BP rhythm. To determine the role of adrenal BMAL1 on BP regulation, adrenal-specific Bmal1 (ASCre/+ ::Bmal1) KO mice were generated using aldosterone synthase Cre recombinase to KO Bmal1 in the adrenal gland zona glomerulosa. We confirmed the localization and efficacy of the KO of BMAL1 to the zona glomerulosa. Male ASCre/+ ::Bmal1 KO mice displayed a shortened BP and activity period/circadian cycle (typically 24 h) by ∼1 h and delayed peak of BP and activity by ∼2 and 3 h, respectively, compared with littermate Cre- control mice. This difference was only evident when KO mice were in metabolic cages, which acted as a stressor, as serum corticosterone was increased in metabolic cages compared with home cages. AS Cre/+ ::Bmal1 KO mice also displayed altered diurnal variation in serum corticosterone. Furthermore, these mice have altered eating behaviors where they have a blunted night/day ratio of food intake, but no change in overall food consumed compared with controls. Overall, these data suggest that adrenal BMAL1 has a role in the regulation of BP rhythm and eating behaviors.


Assuntos
Fatores de Transcrição ARNTL , Pressão Sanguínea , Relógios Circadianos , Comportamento Alimentar , Animais , Masculino , Camundongos , Fatores de Transcrição ARNTL/genética , Encéfalo/metabolismo , Relógios Circadianos/genética , Corticosterona , Camundongos Knockout
3.
Cell Rep ; 42(1): 111982, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640301

RESUMO

Cellular circadian clocks direct a daily transcriptional program that supports homeostasis and resilience. Emerging evidence has demonstrated age-associated changes in circadian functions. To define age-dependent changes at the systems level, we profile the circadian transcriptome in the hypothalamus, lung, heart, kidney, skeletal muscle, and adrenal gland in three age groups. We find age-dependent and tissue-specific clock output changes. Aging reduces the number of rhythmically expressed genes (REGs), indicative of weakened circadian control. REGs are enriched for the hallmarks of aging, adding another dimension to our understanding of aging. Analyzing differential gene expression within a tissue at four different times of day identifies distinct clusters of differentially expressed genes (DEGs). Increased variability of gene expression across the day is a common feature of aged tissues. This analysis extends the landscape for understanding aging and highlights the impact of aging on circadian clock function and temporal changes in gene expression.


Assuntos
Relógios Circadianos , Transcriptoma , Masculino , Animais , Camundongos , Transcriptoma/genética , Ritmo Circadiano/genética , Relógios Circadianos/genética , Hipotálamo , Envelhecimento/genética , Envelhecimento/metabolismo
4.
Can J Physiol Pharmacol ; 101(3): 136-146, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450128

RESUMO

Endothelin-1 (ET-1) is a peptide hormone that acts on its receptors to regulate sodium handling in the kidney's collecting duct. Dysregulation of the endothelin axis is associated with various diseases, including salt-sensitive hypertension and chronic kidney disease. Previously, our lab has shown that the circadian clock gene PER1 regulates ET-1 levels in mice. However, the regulation of ET-1 by PER1 has never been investigated in rats. Therefore, we used a novel model where knockout of Per1 was performed in Dahl salt-sensitive rat background (SS Per1 -/-) to test a hypothesis that PER1 regulates the ET-1 axis in this model. Here, we show increased renal ET-1 peptide levels and altered endothelin axis gene expression in several tissues, including the kidney, adrenal glands, and liver in SS Per1 -/- compared with control SS rats. Edn1 antisense lncRNA Edn1-AS, which has previously been suggested to be regulated by PER1, was also altered in SS Per1 -/- rats compared with control SS rats. These data further support the hypothesis that PER1 is a negative regulator of Edn1 and is important in the regulation of the endothelin axis in a tissue-specific manner.


Assuntos
Relógios Circadianos , Hipertensão , Ratos , Camundongos , Animais , Ratos Endogâmicos Dahl , Relógios Circadianos/genética , Endotelinas , Rim/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Fatores de Transcrição/metabolismo , Pressão Sanguínea/fisiologia , Proteínas Circadianas Period/genética
5.
Am J Physiol Renal Physiol ; 322(4): F449-F459, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129370

RESUMO

PERIOD 1 (PER1) is a circadian clock transcription factor that is regulated by aldosterone, a hormone that increases blood volume and Na+ retention to increase blood pressure. Male global Per1 knockout (KO) mice develop reduced night/day differences in Na+ excretion in response to a high-salt diet plus desoxycorticosterone pivalate treatment (HS + DOCP), a model of salt-sensitive hypertension. In addition, global Per1 KO mice exhibit higher aldosterone levels on a normal-salt diet. To determine the role of Per1 in the kidney, male kidney-specific Per1 KO (KS-Per1 KO) mice were generated using Ksp-cadherin Cre recombinase to remove exons 2-8 of Per1 in the distal nephron and collecting duct. Male KS-Per1 KO mice have increased Na+ retention but have normal diurnal differences in Na+ excretion in response to HS + DOCP. The increased Na+ retention is associated with altered expression of glucocorticoid and mineralocorticoid receptors, increased serum aldosterone, and increased medullary endothelin-1 compared with control mice. Adrenal gland gene expression analysis revealed that circadian clock and aldosterone synthesis genes have altered expression in KS-Per1 KO mice compared with control mice. These results emphasize the importance of the circadian clock not only in maintaining rhythms of physiological functions but also for adaptability in response to environmental cues, such as HS + DOCP, to maintain overall homeostasis. Given the prevalence of salt-sensitive hypertension in the general population, these findings have important implications for our understanding of how circadian clock proteins regulate homeostasis.NEW & NOTEWORTHY For the first time, we show that knockout of the circadian clock transcription factor PERIOD 1 using kidney-specific cadherin Cre results in increased renal Na+ reabsorption, increased aldosterone levels, and changes in gene expression in both the kidney and adrenal gland. Diurnal changes in renal Na+ excretion were not observed, demonstrating that the clock protein PER1 in the kidney is important for maintaining homeostasis and that this effect may be independent of time of day.


Assuntos
Aldosterona , Relógios Circadianos , Hipertensão , Rim , Proteínas Circadianas Period , Aldosterona/sangue , Animais , Caderinas/metabolismo , Relógios Circadianos/genética , Expressão Gênica , Rim/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo
6.
Biomolecules ; 12(2)2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35204763

RESUMO

BMAL1 is a core mammalian circadian clock transcription factor responsible for the regulation of the expression of thousands of genes. Previously, male skeletal-muscle-specific BMAL1-inducible-knockout (iMS-BMAL1 KO) mice have been described as a model that exhibits an aging-like phenotype with an altered gait, reduced mobility, muscle weakness, and impaired glucose uptake. Given this aging phenotype and that chronic kidney disease is a disease of aging, the goal of this study was to determine if iMS-BMAL1 KO mice exhibit a renal phenotype. Male iMS-BMAL1 KO and control mice were challenged with a low potassium diet for five days. Both genotypes responded appropriately by conserving urinary potassium. The iMS-BMAL1 KO mice excreted less potassium during the rest phase during the normal diet but there was no genotype difference during the active phase. Next, iMS-BMAL1 KO and control mice were used to compare markers of kidney injury and assess renal function before and after a phase advance protocol. Following phase advance, no differences were detected in renal mitochondrial function in iMS-BMAL1 KO mice compared to control mice. Additionally, the glomerular filtration rate and renal morphology were similar between groups in response to phase advance. Disruption of the clock in skeletal muscle tissue activates inflammatory pathways within the kidney of male mice, and there is evidence of this affecting other organs, such as the lungs. However, there were no signs of renal injury or altered function following clock disruption of skeletal muscle under the conditions tested.


Assuntos
Fatores de Transcrição ARNTL , Relógios Circadianos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Rim/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo
7.
Can J Physiol Pharmacol ; 98(9): 579-586, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32437627

RESUMO

Previously, we showed that global knockout (KO) of the circadian clock transcription factor PER1 in male, but not female, mice fed a high-salt diet plus mineralocorticoid treatment (HS/DOCP) resulted in nondipping hypertension and decreased night/day ratio of sodium (Na) excretion. Additionally, we have shown that the endothelin-1 (ET-1) gene is targeted by both PER1 and aldosterone. We hypothesized that ET-1 would exhibit a sex-specific response to HS/DOCP treatment in PER1 KO. Here we show that male, but not female, global PER1 KO mice exhibit a decreased night/day ratio of urinary ET-1. Gene expression analysis revealed significant genotype differences in ET-1 and endothelin A receptor (ETA) expression in male, but not female, mice in response to HS/DOCP. Additionally, both wild-type and global PER1 KO male mice significantly increase endothelin B receptor (ETB) expression in response to HS/DOCP, but female mice do not. Finally, siRNA-mediated knockdown of PER1 in mouse cortical collecting duct cells (mpkCCDc14) resulted in increased ET-1 mRNA expression and peptide secretion in response to aldosterone treatment. These data suggest that PER1 is a negative regulator of ET-1 expression in response to HS/DOCP, revealing a novel mechanism for the regulation of renal Na handling in response to HS/DOCP treatment.


Assuntos
Endotelina-1/metabolismo , Hipertensão/metabolismo , Túbulos Renais Coletores/fisiopatologia , Proteínas Circadianas Period/metabolismo , Eliminação Renal/fisiologia , Aldosterona/administração & dosagem , Aldosterona/efeitos adversos , Animais , Relógios Circadianos/fisiologia , Modelos Animais de Doenças , Endotelina-1/urina , Feminino , Humanos , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/genética , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Eliminação Renal/efeitos dos fármacos , Fatores Sexuais , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo
8.
Am J Physiol Renal Physiol ; 318(6): F1463-F1477, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32338037

RESUMO

The renal circadian clock has a major influence on the function of the kidney. Aryl hydrocarbon receptor nuclear translocator-like protein 1 [ARNTL; also known as brain and muscle ARNT-like 1 (BMAL1)] is a core clock protein and transcription factor that regulates the expression of nearly half of all genes. Using male and female kidney-specific cadherin BMAL1 knockout (KS-BMAL1 KO) mice, we examined the role of renal distal segment BMAL1 in blood pressure control and solute handling. We confirmed that this mouse model does not express BMAL1 in thick ascending limb, distal convoluted tubule, and collecting duct cells, which are the final locations for solute and fluid regulation. Male KS-BMAL1 KO mice displayed a substantially lower basal systolic blood pressure compared with littermate control mice, yet their circadian rhythm in pressure remained unchanged [male control mice: 127 ± 0.7 mmHg (n = 4) vs. male KS-BMAL KO mice: 119 ± 2.3 mmHg (n = 5), P < 0.05]. Female mice, however, did not display a genotype difference in basal systolic blood pressure [female control mice: 120 ± 1.6 mmHg (n = 5) vs. female KS-BMAL1 KO mice: 119 ± 1.5 mmHg (n = 7), P = 0.4]. In addition, male KS-BMAL1 KO mice had less Na+ retention compared with control mice in response to a K+-restricted diet (15% less following 5 days of treatment). However, there was no genotype difference in Na+ handling after a K+-restricted diet in female mice. Furthermore, there was evidence indicating a sex-specific response to K+ restriction where female mice reabsorbed less Na+ in response to this dietary challenge compared with male mice. We propose that BMAL1 in the distal nephron and collecting duct contributes to blood pressure regulation and Na+ handling in a sex-specific manner.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Pressão Sanguínea , Ritmo Circadiano , Néfrons/metabolismo , Reabsorção Renal , Sódio/metabolismo , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Animais , Feminino , Genótipo , Homeostase , Túbulos Renais Coletores/metabolismo , Masculino , Camundongos Knockout , Fenótipo , Potássio na Dieta/metabolismo , Fatores Sexuais , Fatores de Tempo
9.
Am J Physiol Renal Physiol ; 316(5): F807-F813, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30759025

RESUMO

Circadian rhythms govern physiological functions and are important for overall health. The molecular circadian clock comprises several transcription factors that mediate circadian control of physiological function, in part, by regulating gene expression in a tissue-specific manner. These connections are well established, but the underlying mechanisms are incompletely understood. The overall goal of this study was to examine the connection among the circadian clock protein Period 1 (Per1), epithelial Na+ channel (ENaC), and blood pressure (BP) using a multipronged approach. Using global Per1 knockout mice on a 129/sv background in combination with a high-salt diet plus mineralocorticoid treatment, we demonstrated that loss of Per1 in this setting is associated with protection from hypertension. Next, we used the ENaC inhibitor benzamil to demonstrate a role for ENaC in BP regulation and urinary Na+ excretion in 129/sv mice. We targeted Per1 indirectly using pharmacological inhibition of Per1 nuclear entry in vivo to demonstrate altered expression of known Per1 target genes as well as a BP-lowering effect in 129/sv mice. Finally, we directly inhibited Per1 via genetic knockdown in amphibian distal nephron cells to demonstrate, for the first time, that reduced Per1 expression is associated with decreased ENaC activity at the single channel level.


Assuntos
Pressão Sanguínea , Ritmo Circadiano , Canais Epiteliais de Sódio/metabolismo , Hipertensão/prevenção & controle , Néfrons/metabolismo , Proteínas Circadianas Period/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Caseína Quinases/antagonistas & inibidores , Caseína Quinases/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Desoxicorticosterona/análogos & derivados , Modelos Animais de Doenças , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/efeitos dos fármacos , Canais Epiteliais de Sódio/genética , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Mineralocorticoides , Natriurese , Néfrons/efeitos dos fármacos , Proteínas Circadianas Period/antagonistas & inibidores , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética , Pirimidinas/farmacologia , Cloreto de Sódio na Dieta , Fatores de Tempo , Xenopus
10.
Am J Physiol Regul Integr Comp Physiol ; 316(1): R50-R58, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427705

RESUMO

The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Hipertensão/genética , Proteínas Circadianas Period/deficiência , Animais , Pressão Sanguínea/fisiologia , Ritmo Circadiano/fisiologia , Feminino , Hipertensão/fisiopatologia , Camundongos Endogâmicos C57BL , Mineralocorticoides , Proteínas Circadianas Period/genética , Cloreto de Sódio na Dieta/metabolismo
11.
Am J Physiol Renal Physiol ; 314(6): F1138-F1144, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357420

RESUMO

Many physiological functions have a circadian rhythm, including blood pressure (BP). BP is highest during the active phase, whereas during the rest period, BP dips 10-20%. Patients that do not experience this dip at night are termed "nondippers." Nondipping hypertension is associated with increased risk of cardiovascular disease. The mechanisms underlying nondipping hypertension are not understood. Without the circadian clock gene Per1, C57BL/6J mice develop nondipping hypertension on a high-salt diet plus mineralocorticoid treatment (HS/DOCP). Our laboratory has shown that PER1 regulates expression of several genes related to sodium (Na) transport in the kidney, including epithelial Na channel (ENaC) and Na chloride cotransporter (NCC). Urinary Na excretion also demonstrates a circadian pattern with a peak during active periods. We hypothesized that PER1 contributes to circadian regulation of BP via a renal Na-handling-dependent mechanism. Na-handling genes from the distal nephron were inappropriately regulated in KO mice on HS/DOCP. Additionally, the night/day ratio of Na urinary excretion by Per1 KO mice is decreased compared with WT (4 × vs. 7×, P < 0.001, n = 6 per group). Distal nephron-specific Per1 KO mice also show an inappropriate increase in expression of Na transporter genes αENaC and NCC. These results support the hypothesis that PER1 mediates control of circadian BP rhythms via the regulation of distal nephron Na transport genes. These findings have implications for the understanding of the etiology of nondipping hypertension and the subsequent development of novel therapies for this dangerous pathophysiological condition.


Assuntos
Pressão Sanguínea , Ritmo Circadiano , Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , Natriurese , Proteínas Circadianas Period/metabolismo , Eliminação Renal , Animais , Pressão Sanguínea/genética , Ritmo Circadiano/genética , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Predisposição Genética para Doença , Hipertensão/genética , Hipertensão/fisiopatologia , Túbulos Renais Distais/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Natriurese/genética , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética , Fenótipo , Eliminação Renal/genética , Cloreto de Sódio na Dieta , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Fatores de Tempo , Regulação para Cima
12.
Am J Physiol Renal Physiol ; 314(2): F251-F259, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046297

RESUMO

Gestational potassium retention, most of which occurs during late pregnancy, is essential for fetal development. The purpose of this study was to examine mechanisms underlying changes in potassium handling by the kidney and colon in pregnancy. We found that potassium intake and renal excretion increased in late pregnancy while fecal potassium excretion remained unchanged and that pregnant rats exhibited net potassium retention. By quantitative PCR we found markedly increased H+-K+-ATPase type 2 (HKA2) mRNA expression in the cortex and outer medullary of late pregnant vs. virgin. Renal outer medullary potassium channel (ROMK) mRNA was unchanged in the cortex, but apical ROMK abundance (by immunofluorescence) was decreased in pregnant vs. virgin in the distal convoluted tubule (DCT) and connecting tubule (CNT). Big potassium-α (BKα) channel-α protein abundance in intercalated cells in the cortex and outer medullary collecting ducts (by immunohistochemistry) fell in late pregnancy. In the distal colon we found increased HKA2 mRNA and protein abundance (Western blot) and decreased BKα protein with no observed changes in mRNA. Therefore, the potassium retention of pregnancy is likely to be due to increased collecting duct potassium reabsorption (via increased HKA2), decreased potassium secretion (via decreased ROMK and BK), as well as increased colonic reabsorption via HKA2.


Assuntos
Colo/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Túbulos Renais Coletores/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Animais , Transporte Biológico , Feminino , Idade Gestacional , ATPase Trocadora de Hidrogênio-Potássio/genética , Reabsorção Intestinal , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Potássio/sangue , Potássio/urina , Canais de Potássio Corretores do Fluxo de Internalização/genética , Gravidez , Ratos Sprague-Dawley , Eliminação Renal , Reabsorção Renal
13.
Am J Physiol Renal Physiol ; 309(11): F933-42, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26377793

RESUMO

We have previously demonstrated that the circadian clock protein period (Per)1 coordinately regulates multiple genes involved in Na(+) reabsorption in renal collecting duct cells. Consistent with these results, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. The proximal tubule is responsible for a majority of Na(+) reabsorption. Previous work has demonstrated that expression of Na(+)/H(+) exchanger 3 (NHE3) oscillates with a circadian pattern and Na(+)-glucose cotransporter (SGLT)1 has been demonstrated to be a circadian target in the colon, but whether these target genes are regulated by Per1 has not been investigated in the kidney. The goal of the present study was to determine if Per1 regulates the expression of NHE3, SGLT1, and SGLT2 in the kidney. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of SGLT1 and NHE3 but not SGLT2 in the renal cortex of mice. Per1 small interfering RNA and pharmacological blockade of Per1 nuclear entry in human proximal tubule HK-2 cells yielded the same results. Examination of heterogeneous nuclear RNA suggested that the effects of Per1 on NHE3 and SGLT1 expression occurred at the level of transcription. Per1 and the circadian protein CLOCK were detected at promoters of NHE3 and SGLT1. Importantly, both membrane and intracellular protein levels of NHE3 and SGLT1 were decreased after blockade of nuclear Per1 entry. This effect was associated with reduced activity of Na(+)-K(+)-ATPase. These data demonstrate a role for Per1 in the transcriptional regulation of NHE3 and SGLT1 in the kidney.


Assuntos
Túbulos Renais Proximais/metabolismo , Proteínas Circadianas Period/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética , Regiões Promotoras Genéticas , Pirimidinas/farmacologia , Interferência de RNA , RNA Mensageiro/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Transfecção
14.
Life Sci ; 118(2): 255-62, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-24721511

RESUMO

AIMS: The present study is designed to consider a role for the circadian clock protein Per1 in the regulation of the endothelin axis in mouse kidney, lung, liver and heart. Renal endothelin-1 (ET-1) is a regulator of the epithelial sodium channel (ENaC) and blood pressure (BP), via activation of both endothelin receptors, ETA and ETB. However, ET-1 mediates many complex events in other tissues. MAIN METHODS: Tissues were collected in the middle of murine rest and active phases, at noon and midnight, respectively. ET-1, ETA and ETB mRNA expressions were measured in the lung, heart, liver, renal inner medulla and renal cortex of wild type and Per1 heterozygous mice using real-time quantitative RT-PCR. KEY FINDINGS: The effect of reduced Per1 expression on levels of mRNAs and the time-dependent regulation of expression of the endothelin axis genes appeared to be tissue-specific. In the renal inner medulla and the liver, ETA and ETB exhibited peaks of expression in opposite circadian phases. In contrast, expressions of ET-1, ETA and ETB in the lung did not appear to vary with time, but ET-1 expression was dramatically decreased in this tissue in Per1 heterozygous mice. Interestingly, ET-1 and ETA, but not ETB, were expressed in a time-dependent manner in the heart. SIGNIFICANCE: Per1 appears to regulate expression of the endothelin axis genes in a tissue-specific and time-dependent manner. These observations have important implications for our understanding of the best time of day to deliver endothelin receptor antagonists.


Assuntos
Relógios Circadianos , Endotelinas/metabolismo , Especificidade de Órgãos , Proteínas Circadianas Period/metabolismo , Animais , Relógios Circadianos/genética , Endotelina-1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Rim/metabolismo , Camundongos , Especificidade de Órgãos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Fatores de Tempo
15.
J Biol Chem ; 289(17): 11791-11806, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24610784

RESUMO

It has been well established that blood pressure and renal function undergo circadian fluctuations. We have demonstrated that the circadian protein Per1 regulates multiple genes involved in sodium transport in the collecting duct of the kidney. However, the role of Per1 in other parts of the nephron has not been investigated. The distal convoluted tubule (DCT) plays a critical role in renal sodium reabsorption. Sodium is reabsorbed in this segment through the actions of the NaCl co-transporter (NCC), which is regulated by the with-no-lysine kinases (WNKs). The goal of this study was to test if Per1 regulates sodium transport in the DCT through modulation of NCC and the WNK kinases, WNK1 and WNK4. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of NCC and WNK1 but increased expression of WNK4 in the renal cortex of mice. These findings were confirmed by using Per1 siRNA and pharmacological blockade of Per1 nuclear entry in mDCT15 cells, a model of the mouse distal convoluted tubule. Transcriptional regulation was demonstrated by changes in short lived heterogeneous nuclear RNA. Chromatin immunoprecipitation experiments demonstrated interaction of Per1 and CLOCK with the promoters of NCC, WNK1, and WNK4. This interaction was modulated by blockade of Per1 nuclear entry. Importantly, NCC protein expression and NCC activity, as measured by thiazide-sensitive, chloride-dependent (22)Na uptake, were decreased upon pharmacological inhibition of Per1 nuclear entry. Taken together, these data demonstrate a role for Per1 in the transcriptional regulation of NCC, WNK1, and WNK4.


Assuntos
Túbulos Renais Distais/metabolismo , Proteínas Circadianas Period/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Primers do DNA , Técnicas de Silenciamento de Genes , Túbulos Renais Distais/enzimologia , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/genética , Proteínas Serina-Treonina Quinases/genética , Membro 3 da Família 12 de Carreador de Soluto/genética
16.
Am J Physiol Renal Physiol ; 305(12): F1697-704, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24154698

RESUMO

The circadian clock plays an important role in the regulation of physiological processes, including renal function and blood pressure. We have previously shown that the circadian protein period (Per)1 regulates the expression of multiple Na(+) transport genes in the collecting duct, including the α-subunit of the renal epithelial Na(+) channel. Consistent with this finding, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. We have also recently demonstrated the potential opposing actions of cryptochrome (Cry)2 on Per1 target genes. Recent work by others has demonstrated that Cry1/2 regulates aldosterone production through increased expression of the adrenal gland-specific rate-limiting enzyme 3ß-dehydrogenase isomerase (3ß-HSD). Therefore, we tested the hypothesis that Per1 plays a role in the regulation of aldosterone levels and renal Na(+) retention. Using RNA silencing and pharmacological blockade of Per1 nuclear entry in the NCI-H295R human adrenal cell line, we showed that Per1 regulates 3ß-HSD expression in vitro. These results were confirmed in vivo: mice with reduced levels of Per1 had decreased levels of plasma aldosterone and decreased mRNA expression of 3ß-HSD. We postulated that mice with reduced Per1 would have a renal Na(+)-retaining defect. Indeed, metabolic cage experiments demonstrated that Per1 heterozygotes excreted more urinary Na(+) compared with wild-type mice. Taken together, these data support the hypothesis that Per1 regulates aldosterone levels and that Per1 plays an integral role in the regulation of Na(+) retention.


Assuntos
Aldosterona/metabolismo , Rim/metabolismo , Proteínas Circadianas Period/metabolismo , Sódio/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Criptocromos/metabolismo , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/efeitos dos fármacos , Proteínas Circadianas Period/genética , RNA Interferente Pequeno/farmacologia
17.
Front Physiol ; 4: 253, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24062694

RESUMO

Renal function and blood pressure (BP) exhibit a circadian pattern of variation, but the molecular mechanism underlying this circadian regulation is not fully understood. We have previously shown that the circadian clock protein Per1 positively regulates the basal and aldosterone-mediated expression of the alpha subunit of the renal epithelial sodium channel (αENaC). The mechanism of this regulation has not been determined however. To further elucidate the mechanism of mineralocorticoid receptor (MR) and Per1 action, site-directed mutagenesis, DNA pull-down assays and chromatin immunoprecipitation (ChIP) methods were used to investigate the coordinate regulation of αENaC by Per1 and MR. Mutation of two circadian response E-boxes in the human αENaC promoter abolished both basal and aldosterone-mediated promoter activity. DNA pull down assays demonstrated the interaction of both MR and Per1 with the E-boxes from the αENaC promoter. These observations were corroborated by ChIP experiments showing increased occupancy of MR and Per1 on an E-box of the αENaC promoter in the presence of aldosterone. This is the first report of an aldosterone-mediated increase in Per1 on a target gene promoter. Taken together, these results demonstrate the novel finding that Per1 and MR mediate the aldosterone response of αENaC through DNA/protein interaction in renal collecting duct cells.

18.
Am J Physiol Regul Integr Comp Physiol ; 305(7): R735-47, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824961

RESUMO

Mounting evidence suggests that the circadian clock plays an integral role in the regulation of many physiological processes including blood pressure, renal function, and metabolism. The canonical molecular clock functions via activation of circadian target genes by Clock/Bmal1 and repression of Clock/Bmal1 activity by Per1-3 and Cry1/2. However, we have previously shown that Per1 activates genes important for renal sodium reabsorption, which contradicts the canonical role of Per1 as a repressor. Moreover, Per1 knockout (KO) mice exhibit a lowered blood pressure and heavier body weight phenotype similar to Clock KO mice, and opposite that of Cry1/2 KO mice. Recent work has highlighted the potential role of Per1 in repression of Cry2. Therefore, we postulated that Per1 potentially activates target genes through a Cry2-Clock/Bmal1-dependent mechanism, in which Per1 antagonizes Cry2, preventing its repression of Clock/Bmal1. This hypothesis was tested in vitro and in vivo. The Per1 target genes αENaC and Fxyd5 were identified as Clock targets in mpkCCDc14 cells, a model of the renal cortical collecting duct. We identified PPARα and DEC1 as novel Per1 targets in the mouse hepatocyte cell line, AML12, and in the liver in vivo. Per1 knockdown resulted in upregulation of Cry2 in vitro, and this result was confirmed in vivo in mice with reduced expression of Per1. Importantly, siRNA-mediated knockdown of Cry2 and Per1 demonstrated opposing actions for Cry2 and Per1 on Per1 target genes, supporting the potential Cry2-Clock/Bmal1-dependent mechanism underlying Per1 action in the liver and kidney.


Assuntos
Criptocromos/metabolismo , Rim/metabolismo , Fígado/metabolismo , Proteínas Circadianas Period/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Criptocromos/deficiência , Criptocromos/genética , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Canais Iônicos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Proteínas dos Microfilamentos , PPAR alfa/genética , PPAR alfa/metabolismo , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética , Interferência de RNA , RNA Mensageiro/metabolismo , Transfecção
19.
Am J Physiol Renal Physiol ; 303(7): F918-27, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22832921

RESUMO

Increasing evidence suggests that the circadian clock plays an important role in the control of renal function and blood pressure. We previously showed that the circadian clock protein Period (Per)1, positively regulates the expression of the rate limiting subunit of the renal epithelial sodium channel (αENaC), which contributes to blood pressure regulation. Casein kinases 1δ and 1ε (CK1δ/ε) are critical regulators of clock proteins. CK1δ/ε must phosphorylate the circadian clock protein Per1 in order for the latter to enter the nucleus. We used a commercially available CK1δ/ε inhibitor, PF670462, to test the effect of CK1δ/ε blockade and inhibited Per1 nuclear entry on αENaC in a model of the renal cortical collecting duct (mpkCCD(c14) cells). CK1δ/ε blockade prevented Per1 and Clock from interacting with an E-box from the αENaC promoter. CK1δ/ε inhibition reduced αENaC mRNA levels by <60%. A similar decrease in αENaC mRNA was observed following siRNA-mediated CK1δ/ε knock-down. Inhibition of CK1δ/ε effectively prevented the transcriptional response of αENaC to aldosterone, suggesting an interaction between the circadian clock and aldosterone-mediated regulation of αENaC. CK1δ/ε inhibition significantly reduced αENaC but increased Caveolin-1 membrane protein levels; transepithelial current, a measure of ENaC activity, was decreased. Importantly, single channel analysis in amphibian renal cells demonstrated a dramatic decrease in the number of patches with observable ENaC current following CK1δ/ε inhibition. The present study shows for the first time that CK1δ/ε inhibition and impaired Per1 nuclear entry results in decreased αENaC expression and ENaC activity, providing further support for direct control of ENaC by the circadian clock.


Assuntos
Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase Idelta/antagonistas & inibidores , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , Animais , Proteínas CLOCK/metabolismo , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/metabolismo , Linhagem Celular , Células Cultivadas , Canais Epiteliais de Sódio/genética , Túbulos Renais Coletores/efeitos dos fármacos , Camundongos , Proteínas Circadianas Period/metabolismo , Fosforilação , Pirimidinas/farmacologia
20.
Hypertension ; 59(6): 1151-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22526258

RESUMO

The circadian clock protein period 1 (Per1) contributes to the regulation of expression of the α subunit of the renal epithelial sodium channel at the basal level and in response to the mineralocorticoid hormone aldosterone. The goals of the present study were to define the role of Per1 in the regulation of additional renal sodium handling genes in cortical collecting duct cells and to evaluate blood pressure (BP) in mice lacking functional Per1. To determine whether Per1 regulates additional genes important in renal sodium handling, a candidate gene approach was used. Immortalized collecting duct cells were transfected with a nontarget small interfering RNA or a Per1-specific small interfering RNA. Expression of the genes for α-epithelial sodium channel and Fxyd5, a positive regulator of Na, K-ATPase activity, decreased in response to Per1 knockdown. Conversely, mRNA expression of caveolin 1, Ube2e3, and ET-1, all negative effectors of epithelial sodium channel, was induced after Per1 knockdown. These results led us to evaluate BP in Per1 KO mice. Mice lacking Per1 exhibit significantly reduced BP and elevated renal ET-1 levels compared with wild-type animals. Given the established role of renal ET-1 in epithelial sodium channel inhibition and BP control, elevated renal ET-1 is one possible explanation for the lower BP observed in Per1 KO mice. These data support a role for the circadian clock protein Per1 in the coordinate regulation of genes involved in renal sodium reabsorption. Importantly, the lower BP observed in Per1 KO mice compared with wild-type mice suggests a role for Per1 in BP control as well.


Assuntos
Pressão Sanguínea/fisiologia , Túbulos Renais Coletores/metabolismo , Proteínas Circadianas Period/metabolismo , Sódio/metabolismo , Animais , Pressão Sanguínea/genética , Western Blotting , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Endotelina-1/genética , Endotelina-1/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Regulação da Expressão Gênica , Transporte de Íons/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Modelos Genéticos , Proteínas Circadianas Period/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...