Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 104(2): 765-774, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31776608

RESUMO

25-hydroxyvitamin D3 has attracted considerable attention due to its great medical value and huge market demand in animal husbandry. Microbial production of 25-hydroxyvitamin D3 has been recognized as an alternative superior to traditional chemical synthesis. In this study, a Gram-positive bacteria zju 4-2 (CCTCC M 2019385) was isolated from the soil using vitamin D3 as the sole carbon source and was identified as Bacillus cereus according to its physiological characteristics and 16S rRNA analysis, which also showed a relatively high capacity for 25-hydroxyvitamin D3 production. Through systematic optimization of different catalytic conditions, the optimal solvent system of vitamin D3, vitamin D3 addition time and concentration, temperature, and pH were shown to be propylene glycol/ethanol (v/v = 9:1), early stationary phase, 2 g/L, 37 °C, and pH 7.2, respectively. With these optimal conditions, 796 mg/L of 25-hydroxyvitamin D3 was achieved after 48 h bioconversion with zju 4-2 at the shake flask level. Finally, up to 830 mg/L 25-hydroxyvitamin D3 with a yield of 41.5% was obtained in a 5 L fermentation tank. Our developed biotransformation process with this newly isolated strain provides a platform to produce 25-hydroxyvitamin D3 efficiently at industrialization scale.


Assuntos
Bacillus cereus/isolamento & purificação , Bacillus cereus/metabolismo , Calcifediol/metabolismo , Hormônios e Agentes Reguladores de Cálcio/metabolismo , Colecalciferol/metabolismo , Bacillus cereus/classificação , Bacillus cereus/genética , Biotransformação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fermentação , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Temperatura
2.
RSC Adv ; 8(59): 33817-33827, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35548841

RESUMO

High alkali and alkali earth metals (AAEMs) content in coal causes severe slagging and fouling during combustion in a boiler. In this study, the ash deposition behavior of a high-alkali coal at different bed temperatures and the effect of kaolin were investigated in a 30 kW circulating fluidized bed (CFB) test system using an ash slagging probe and deposition probe. The results show that the ash deposition tendency increases with the bed temperature. The condensation of Na2SO4 is an important inducement for slag formation in the furnace. The melting or partial melting of slags is attributed to Na-Fe-Ca eutectics. At 920 °C, Na2SO4 will react with CaSO4 to form the low-melting compound of Na2SO4-CaSO4. The deposited ash on the convection-heating surface consists of granular particles. On the windward side, the layered-structure ash deposits, i.e. the inner and outer layers, are formed at the bed temperature of 920 °C but are absent at lower temperatures (820 °C and 870 °C). The formation of the inner layer consists of fine particles (<2 µm) and is closely related to Na2SO4. The size of the deposited ash in the outer layer is larger than 10 µm, while that on the leeward side is less than 10 µm. By adding kaolin in the coal, the slags are replaced by loose particles due to the absorption reactions between kaolin and alkali metals. The ash deposition tendency is improved and the optimal result is achieved when kaolin is added at an addition ratio of 3%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...