Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 878
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407659, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842476

RESUMO

The further development of aqueous zinc (Zn)-ion batteries (AZIBs) is constrained by the high freezing points and the instability on Zn anodes. Current improvement strategies mainly focus on regulating hydrogen bond (HB) donors (H) of solvent water to disrupt HBs, while neglecting the environment of HB-acceptors (O). Herein, we propose a mechanism of chaotropic cation-regulated HB-acceptor via a "super hydrous solvated" structure. Chaotropic Ca2+ can form a solvated structure via competitively binding O atoms in H2O, effectively breaking the HBs among H2O molecules, thereby reducing the freezing point of hybrid 1 mol L-1 (M) ZnCl2 + 4 M CaCl2 electrolyte (-113.2 °C). Meanwhile, the high hydratability of Ca2+ contributes to the water-poor solvated structure of Zn2+, suppressing side reactions and uneven Zn deposition. Benefiting from the anti-freezing electrolyte and high reversible Zn anode, the Zn||Pyrene-4,5,9,10-tetraone (PTO) batteries deliver an ultrahigh capacity of 183.9 mAh g-1 at 1.0 A g-1 over 1600-time stable cycling at -60 °C. This work presents a cheap and efficient aqueous electrolyte to simultaneously improve low-temperature performances and Zn stability, broadening the design concepts for antifreeze electrolytes.

2.
Front Immunol ; 15: 1405084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835771

RESUMO

Introduction: Cynaroside exhibits various biological properties, including anti-inflammatory, antiviral, antitumor, and cardioprotective effects. However, its involvement in methotrexate (MTX)-induced intestinal inflammation remains inadequately understood. Thus, we investigated the impact of cynaroside on MTX-induced intestinal inflammation and its potential mechanisms. Methods: To assess the protective potential of cynaroside against intestinal inflammation, Sprague-Dawley rats were subjected to a regimen of 7 mg/kg MTX for 3 days, followed by treatment with cynaroside at varying doses (10, 20, or 40 mg/kg). Histopathological evaluations were conducted alongside measurements of inflammatory mediators to elucidate the involvement of the NLRP3 inflammasome in alleviating intestinal inflammation. Results: Administration of 7 mg/kg MTX resulted in decreased daily food intake, increased weight loss, and elevated disease activity index in rats. Conversely, treatment with cynaroside at 20 or 40 mg/kg ameliorated the reductions in body weight and daily food intake and suppressed the MTX-induced elevation in the disease activity index. Notably, cynaroside administration at 20 or 40 mg/kg attenuated inflammatory cell infiltration, augmented goblet cell numbers and lowered serum levels of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-18, as well as the CD68-positive cell rate in the intestines of MTX-induced rats. Furthermore, cynaroside downregulated the expression levels of NLRP3, cleaved caspase 1, and cleaved IL-1ß in MTX-induced rats. Discussion: Collectively, our findings indicated that cymaroside alleviates intestinal inflammatory injury by inhibiting the activation of NLRP3 inflammasome in MTX-induced rats.


Assuntos
Enterite , Inflamassomos , Metotrexato , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Ratos , Masculino , Enterite/induzido quimicamente , Enterite/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Modelos Animais de Doenças
3.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825137

RESUMO

This study characterized the sleep activity, sleep mechanism, and active peptides of whey protein hydrolysates selected through behavioral analysis of fruit-flies (Drosophila melanogaster). Sleep-inducing whey protein (WP) hydrolysate was selected through fruit fly behavior analysis, and sleep activity was measured using a pentobarbital model and electroencephalographic analysis. The mechanism of action was confirmed using a γ-aminobutyric acid (GABA) receptor antagonist, and the active peptide was identified using liquid chromatography-mass spectroscopy. Whey protein hydrolysate, prepared using Alcalase and Prozyme (WP-AP), increased sleep time in a dose-dependent manner. WP-AP significantly increased not only sleep time but also slow-wave sleep and showed an insomnia-alleviating effect in a caffeine-induced insomnia mouse model. In addition, the gene and protein expression levels of GABA sub-type A (GABAA) receptors increased in the brains of mice orally administered with WP-AP. Through peptide analysis, the mixture of DIQK, VPPF peptide, and GABA contained in WP-AP was estimated to exhibit sleep activity, and due to its high content, DIQK was speculated to be the main sleep -inducing ingredient. These results indicate that WP-AP has the potential to be used as a new ingredient to improve sleep quality.

4.
Mol Biol Evol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829799

RESUMO

Global climate change has led to shifts in the distribution ranges of many terrestrial species, promoting their migration from lower altitudes or latitudes to higher ones. Meanwhile, successful invaders have developed genetic adaptations enabling the colonization of new environments. Over the past 40 years, Rattus tanezumi (RT) has expanded into northern China (Northwest and North China) from its southern origins. We studied the cold adaptation of RT and its potential for northward expansion by comparing it with sympatric R. norvegicus (RN), which is well adapted to cold regions. Through population genomic analysis, we revealed that the invading RT rats have split into three distinct populations: the North, Northwest and Tibetan populations. The first two populations exhibited high genetic diversity, while the latter population showed remarkably low genetic diversity. These rats have developed various genetic adaptations to cold, arid, hypoxic, and high-UV conditions. Cold acclimation tests revealed divergent thermoregulation between RT and RN. Specifically, RT exhibited lower brown adipose tissue (BAT) activity and higher metabolic rates than did RN. Transcriptome analysis highlighted changes in genes regulating triglyceride catabolic processes in RT, including Apoa1 and Apoa4, which were upregulated, under selection and associated with local adaptation. In contrast, RN showed changes in carbohydrate metabolism genes. Despite the cold adaptation of RT, we observed genotypic and phenotypic constraints that may limit its ability to cope with severe low temperatures farther north. Consequently, it is less likely that RT rats will invade and overlap with RN rats in farther northern regions.

5.
Small ; : e2401970, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770987

RESUMO

Transition metal compounds (TMCs) have long been potential candidate catalysts in persulfate-based advanced oxidation process (PS-AOPs) due to their Fenton-like catalyze ability for radical generation. However, the mechanism involved in TMCs-catalyzed nonradical PS-AOPs remains obscure. Herein, the growth of FeO on the Fe3O4/carbon precursor is regulated by restricted pyrolysis of MIL-88A template to activate peroxymonosulfate (PMS) for tetracycline (TC) removal. The higher FeO incorporation conferred a 2.6 times higher degradation performance than that catalyzed by Fe3O4 and also a higher interference resistance to anions or natural organic matter. Unexpectedly, the quenching experiment, probe method, and electron paramagnetic resonance quantitatively revealed that the FeO reassigned high nonradical species (1O2 and FeIV═O) generation to replace original radical system created by Fe3O4. Density functional theory calculation interpreted that PMS molecular on strongly-adsorbed (200) and (220) facets of FeO enjoyed unique polarized electronic reception for surface confinement effect, thus the retained peroxide bond energetically supported the production of 1O2 and FeIV═O. This work promotes the mechanism understanding of TMCs-induced surface-catalyzed persulfate activation and enables them better perform catalytic properties in wastewater treatment.

6.
Arch Rheumatol ; 39(1): 140-148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38774705

RESUMO

Objectives: This study aimed to clarify the relationship between Mycoplasma pneumoniae (M. pneumoniae) and Kawasaki disease by conducting an updated systemic review and meta-analysis of published studies. Materials and methods: Studies mentioning M. pneumoniae and Kawasaki disease before October 2022 were included in this meta-analysis. The pooled prevalence was calculated, and the log odds ratio in the random effects model was applied to estimate the pooled prevalence of M. pneumoniae infection in pediatric patients with Kawasaki disease. In addition, the clinical parameters, such as hemoglobin and erythrocyte sedimentation rate, were analyzed. Six studies with a total of 1,859 pediatric patients with Kawasaki disease were enrolled. The focused outcome was the pooled prevalence and clinical parameters. Results: The pooled prevalence of M. pneumoniae infection was statistically significant in pediatric patients with Kawasaki disease. In addition, the values of hemoglobin and erythrocyte sedimentation rate were significantly different between M. pneumoniae-infected and non-M. pneumoniae-infected patients with Kawasaki disease. Other clinical parameters were not significantly different between M. pneumoniae-infected and non-M. pneumoniae-infected patients with Kawasaki disease. Conclusion: The results suggest that M. pneumoniae infection is significantly prevalent in pediatric patients with Kawasaki disease. The lower values of hemoglobin and erythrocyte sedimentation rate in M. pneumoniae-infected patients with Kawasaki disease might be needed to investigate further.

7.
Pediatr Infect Dis J ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754001

RESUMO

BACKGROUND: Mycoplasma pneumoniae (M. pneumoniae) is a common pathogen for community-acquired pneumonia and is also implicated in a broad array of extra-pulmonary manifestations. M. pneumoniae infection is rarely associated with concurrent central nervous system (CNS) and peripheral nervous system (PNS) involvement in children. METHODS: We report 2 patients who presented with acute encephalitis and polyradiculitis due to M. pneumoniae infection and review the literature to discuss the pathogenesis and treatment of concomitant CNS and PNS involvement associated with M. pneumoniae infection. RESULTS: We report two 6-year-old boys with M. pneumoniae antecedent infection who presented initially with impaired consciousness followed by limb weakness, limb pain and urinary retention, and responded well to immunotherapy. CONCLUSIONS: We described 2 patients who presented symptomatic combined CNS and PNS involvement with persistent urinary retention associated with M. pneumoniae infection. We found autoimmunity plays an important role and recommend that antibiotics and immunomodulators should be administered with concurrent CNS and PNS involvement associated with M. pneumoniae.

8.
Antiviral Res ; 227: 105916, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38777095

RESUMO

The severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel phlebovirus, recently being officially renamed as Dabie bandavirus, and a causative agent for an emerging infectious disease associated with high fatality. Effective therapeutics and vaccines are lacking and disease pathogenesis is yet to be fully elucidated. In our effort to identify new SFTSV inhibitory molecules, 6-Thioguanine (6-TG) was found to potently inhibit SFTSV infection. 6-TG has been widely used as therapeutic agent since the approval of the Food and Drug Administration in the 1960s. In the current study, we showed that 6-TG was a potent inhibitor of SFTSV infection with 50% effective concentrations (EC50) of 3.465 µM in VeroE6 cells, and 1.848 µM in HUVEC cells. The selectivity index (SI) was >57 in VeroE6 cells and >108 in HUVEC cells, respectively. The SFTSV RNA transcription, protein synthesis, and progeny virions were reduced in a dose dependent manner by the presence of 6-TG in the in vitro infection assay. Further study on the mechanism of the anti-SFTSV activity showed that 6-TG downregulated the production of early growth response gene-1 (EGR1). Using gene silencing and overexpression, we further confirmed that EGR1 was a host restriction factor against SFTSV. Meanwhile, treatment of infected experimental animals with 6-TG inhibited SFTSV infection and alleviated multi-organ dysfunction. In conclusion, we have identified 6-TG as an effective inhibitor of SFTSV replication via the inhibition of EGR1 expression. Further studies are needed to evaluate of 6-TG as a potential therapeutic for treating SFTS.

9.
Viruses ; 16(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793619

RESUMO

BACKGROUND AND AIMS: The outcomes of HBV infections are related to complex immune imbalances; however, the precise mechanisms by which HBV induces immune dysfunction are not well understood. METHODS: HBV transgenic (HBs-Tg) mice were used to investigate intrahepatic NK cells in two distinct subsets: conventional NK (cNK) and liver-resident NK (LrNK) cells during a chronic HBV infection. RESULTS: The cNK cells, but not the LrNK cells, were primarily responsible for the increase in the number of bulk NK cells in the livers of ageing HBs-Tg mice. The hepatic cNK cells showed a stronger ability to produce IL-10, coupled with a higher expression of CD69, TIGIT and PD-L1, and lower NKG2D expression in ageing HBs-Tg mice. A lower mitochondrial mass and membrane potential, and less polarized localization were observed in the hepatic cNK cells compared with the splenic cNK cells in the HBs-Tg mice. The enhanced galectin-3 (Gal-3) secreted from HBsAg+ hepatocytes accounted for the IL-10 production of hepatic cNK cells via ITGB1 signaling. For humans, LGALS3 and ITGB1 expression is positively correlated with IL-10 expression, and negatively correlated with the poor clinical progression of HCC. CONCLUSIONS: Gal-3-ITGB1 signaling shapes hepatic cNK cells but not LrNK cells during a chronic HBV infection, which may correlate with HCC progression.


Assuntos
Carcinoma Hepatocelular , Galectina 3 , Vírus da Hepatite B , Interleucina-10 , Células Matadoras Naturais , Neoplasias Hepáticas , Fígado , Camundongos Transgênicos , Transdução de Sinais , Animais , Camundongos , Células Matadoras Naturais/imunologia , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Interleucina-10/genética , Interleucina-10/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fígado/patologia , Fígado/imunologia , Fígado/virologia , Fígado/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Progressão da Doença , Masculino , Feminino , Hepatócitos/virologia , Hepatócitos/metabolismo , Hepatócitos/imunologia , Camundongos Endogâmicos C57BL , Galectinas/genética , Galectinas/metabolismo
10.
New Phytol ; 243(1): 362-380, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38730437

RESUMO

Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.


Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oryza , Oxilipinas , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Rhizoctonia , Ácido Salicílico , Xanthomonas , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Xanthomonas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizoctonia/fisiologia , Imunidade Vegetal/efeitos dos fármacos , Mutação/genética , Resistência à Doença/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica/efeitos dos fármacos
11.
Int J Mol Sci ; 25(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791584

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with heterogeneous and complex genetic underpinnings. Our previous microarray gene expression profiling identified significantly different neuregulin-2 gene (NRG2) expression between ASD patients and controls. Thus, we aimed to clarify whether NRG2 is a candidate gene associated with ASD. The study consisted of two stages. First, we used real-time quantitative PCR in 20 ASDs and 20 controls to confirm the microarray gene expression profiling results. The average NRG2 gene expression level in patients with ASD (3.23 ± 2.80) was significantly lower than that in the controls (9.27 ± 4.78, p < 0.001). Next, we conducted resequencing of all the exons of NRG2 in a sample of 349 individuals with ASD, aiming to identify variants of the NRG2 associated with ASD. We identified three variants, including two single nucleotide variants (SNVs), IVS3 + 13A > G (rs889022) and IVS10 + 32T > A (rs182642591), and one small deletion at exon 11 of NRG2 (delGCCCGG, rs933769137). Using data from the Taiwan Biobank as the controls, we found no significant differences in allele frequencies of rs889022 and rs182642591 between two groups. However, there is a significant difference in the genotype and allele frequency distribution of rs933769137 between ASDs and controls (p < 0.0001). The small deletion is located in the EGF-like domain at the C-terminal of the NRG2 precursor protein. Our findings suggest that NRG2 might be a susceptibility gene for ASD.


Assuntos
Transtorno do Espectro Autista , Predisposição Genética para Doença , Neurregulinas , Polimorfismo de Nucleotídeo Único , Humanos , Transtorno do Espectro Autista/genética , Masculino , Feminino , Neurregulinas/genética , Neurregulinas/metabolismo , Frequência do Gene , Estudos de Casos e Controles , Criança , Estudos de Associação Genética , Perfilação da Expressão Gênica , Éxons/genética , Adolescente , Adulto , Fatores de Crescimento Neural
12.
Front Surg ; 11: 1344802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712338

RESUMO

Introduction: Pedicle screw instrumentation (PSI) serves as the widely accepted surgical treatment for adolescent idiopathic scoliosis (AIS). The accuracy of screw positioning has remarkably improved with robotic assistance. Nonetheless, its impact on radiographic and clinical outcomes remains unexplored. This study aimed to investigate the radiographic and clinical outcomes of robot-assisted PSI vs. conventional freehand method in AIS patients. Methods: Data of AIS patients who underwent PSI with all pedicle screws between April 2013 and March 2022 were included and retrospectively analyzed; those with hybrid implants were excluded. Recruited individuals were divided into the Robot-assisted or Freehand group according to the technique used. Radiographic parameters and clinical outcome measures were documented. Results: In total, 50 patients (19, Freehand group; 31, Robot-assisted group) were eligible, with an average age and follow-up period of 17.6 years and 60.2 months, respectively, and female predominance (40/50, 80.0%). The correction rates of Cobb's angles for both groups were significant postoperatively. Compared to freehand, the robot-assisted technique achieved a significantly reduced breech rate and provided better trunk shift and radiographic shoulder height correction with preserved lumbar lordosis, resulting in significantly improved visual analog scale scores for back pain from the third postoperative month. Conclusion: Overall, robot-assisted PSI provides satisfactory radiographic and clinical outcomes in AIS patients.

13.
J Phys Chem Lett ; 15(23): 6038-6044, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38819134

RESUMO

The collisional charge-transfer reaction between Ar+(2P3/2,1/2) and CO represents one of the most studied ion-molecule systems; many controversies persist among different studies, and the detailed quantum state-to-state charge-transfer dynamics remains unknown. Here, differential cross sections of the charge-transfer process between the spin-orbit ground Ar+(2P3/2) ion and CO are reported at three center-of-mass collision energies of 1.02, 0.72, and 0.40 eV using a home-built three-dimensional velocity-map imaging-based ion-molecule crossed beam setup. At all three collision energies, the direct energy resonant charge-transfer mechanism dominates the reaction, featuring predominantly forward scattering with the CO+ product population peaking at the v' = 6 and v' = 7 vibrational levels. Only at the lowest collision energy of 0.40 eV is the significant backward peaked scattering product observed, with CO+ populated from v' = 4 to v' = 8. There is no obvious evidence for the formation of CO+ in excited electronic state A2Π+, in qualitative accord with previous theoretical predictions.

14.
Biomedicines ; 12(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38672207

RESUMO

It is crucial to regulate N-methyl-D-aspartate (NMDA) function bivalently depending on the central nervous system (CNS) conditions. CNS disorders with NMDA hyperfunction are involved in the pathogenesis of neurotoxic and/or neurodegenerative disorders with elevated D-serine, one of the NMDA receptor co-agonists. On the contrary, NMDA-enhancing agents have been demonstrated to improve psychotic symptoms and cognition in CNS disorders with NMDA hypofunction. Serine racemase (SR), the enzyme regulating both D- and L-serine levels through both racemization (catalysis from L-serine to D-serine) and ß-elimination (degradation of both D- and L-serine), emerges as a promising target for bidirectional regulation of NMDA function. In this study, we explored using dimethyl malonate (DMM), a pro-drug of the SR inhibitor malonate, to modulate NMDA activity in C57BL/6J male mice via intravenous administration. Unexpectedly, 400 mg/kg DMM significantly elevated, rather than decreased (as a racemization inhibitor), D-serine levels in the cerebral cortex and plasma. This outcome prompted us to investigate the regulatory effects of dodecagalloyl-α-D-xylose (α12G), a synthesized tannic acid analog, on SR activity. Our findings showed that α12G enhanced the racemization activity of human SR by about 8-fold. The simulated and fluorescent assay of binding affinity suggested a noncooperative binding close to the catalytic residues, Lys56 and Ser84. Moreover, α12G treatment can improve behaviors associated with major CNS disorders with NMDA hypofunction including hyperactivity, prepulse inhibition deficit, and memory impairment in animal models of positive symptoms and cognitive impairment of psychosis. In sum, our findings suggested α12G is a potential therapeutic for treating CNS disorders with NMDA hypofunction.

15.
Sci Rep ; 14(1): 9235, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649718

RESUMO

Magnetic resonance-diffusion tensor imaging (MR-DTI) has been used in the microvascular decompression and gamma knife radiosurgery in trigeminal neuralgia (TN) patients; however, use of percutaneous stereotactic radiofrequency rhizotomy (PSR) to target an abnormal trigeminal ganglion (ab-TG) is unreported. Fractional anisotropy (FA), mean and radial diffusivity (MD and RD, respectively), and axial diffusivity (AD) of the trigeminal nerve (CNV) were measured in 20 TN patients and 40 healthy control participants immediately post PSR, at 6-months, and at 1 year. Longitudinal alteration of the diffusivity metrics and any correlation with treatment effects, or prognoses, were analyzed. In the TN group, either low FA (value < 0.30) or a decreased range compared to the adjacent FA (dFA) > 17% defined an ab-TG. Two-to-three days post PSR, all 15 patients reported decreased pain scores with increased FA at the ab-TG (P < 0.001), but decreased MD and RD (P < 0.01 each). Treatment remained effective in 10 of 14 patients (71.4%) and 8 of 12 patients (66.7%) at the 6-month and 1-year follow-ups, respectively. In patients with ab-TGs, there was a significant difference in treatment outcomes between patients with low FA values (9 of 10; 90%) and patients with dFA (2 of 5; 40%) (P < 0.05). MR-DTI with diffusivity metrics correlated microstructural CNV abnormalities with PSR outcomes. Of all the diffusivity metrics, FA could be considered a novel objective quantitative indicator of treatment effects and a potential indicator of PSR effectiveness in TN patients.


Assuntos
Imagem de Tensor de Difusão , Rizotomia , Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/cirurgia , Neuralgia do Trigêmeo/diagnóstico por imagem , Masculino , Feminino , Rizotomia/métodos , Pessoa de Meia-Idade , Imagem de Tensor de Difusão/métodos , Idoso , Resultado do Tratamento , Adulto , Nervo Trigêmeo/cirurgia , Nervo Trigêmeo/diagnóstico por imagem , Nervo Trigêmeo/patologia , Radiocirurgia/métodos , Anisotropia , Prognóstico
16.
Phys Med Biol ; 69(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38593815

RESUMO

Objective. The primary objective of this study is to address the reconstruction time challenge in magnetic particle imaging (MPI) by introducing a novel approach named SNR-peak-based frequency selection (SPFS). The focus is on improving spatial resolution without compromising reconstruction speed, thereby enhancing the clinical potential of MPI for real-time imaging.Approach. To overcome the trade-off between reconstruction time and spatial resolution in MPI, the researchers propose SPFS as an innovative frequency selection method. Unlike conventional SNR-based selection, SPFS prioritizes frequencies with signal-to-noise ratio (SNR) peaks that capture crucial system matrix information. This adaptability to varying quantities of selected frequencies enhances versatility in the reconstruction process. The study compares the spatial resolution of MPI reconstruction using both SNR-based and SPFS frequency selection methods, utilizing simulated and real device data.Main results.The research findings demonstrate that the SPFS approach substantially improves image resolution in MPI, especially when dealing with a limited number of frequency components. By focusing on SNR peaks associated with critical system matrix information, SPFS mitigates the spatial resolution degradation observed in conventional SNR-based selection methods. The study validates the effectiveness of SPFS through the assessment of MPI reconstruction spatial resolution using both simulated and real device data, highlighting its potential to address a critical limitation in the field.Significance.The introduction of SPFS represents a significant breakthrough in MPI technology. The method not only accelerates reconstruction time but also enhances spatial resolution, thus expanding the clinical potential of MPI for various applications. The improved real-time imaging capabilities of MPI, facilitated by SPFS, hold promise for advancements in drug delivery, plaque assessment, tumor treatment, cerebral perfusion evaluation, immunotherapy guidance, andin vivocell tracking.


Assuntos
Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador/métodos , Fatores de Tempo , Imagens de Fantasmas , Imagem Molecular/métodos
17.
Int J Cancer ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577882

RESUMO

Patient-derived organoids (PDOs) may facilitate treatment selection. This retrospective cohort study evaluated the feasibility and clinical benefit of using PDOs to guide personalized treatment in metastatic breast cancer (MBC). Patients diagnosed with MBC were recruited between January 2019 and August 2022. PDOs were established and the efficacy of customized drug panels was determined by measuring cell mortality after drug exposure. Patients receiving organoid-guided treatment (OGT) were matched 1:2 by nearest neighbor propensity scores with patients receiving treatment of physician's choice (TPC). The primary outcome was progression-free survival. Secondary outcomes included objective response rate and disease control rate. Targeted gene sequencing and pathway enrichment analysis were performed. Forty-six PDOs (46 of 51, 90.2%) were generated from 45 MBC patients. PDO drug screening showed an accuracy of 78.4% (95% CI 64.9%-91.9%) in predicting clinical responses. Thirty-six OGT patients were matched to 69 TPC patients. OGT was associated with prolonged median progression-free survival (11.0 months vs. 5.0 months; hazard ratio 0.53 [95% CI 0.33-0.85]; p = .01) and improved disease control (88.9% vs. 63.8%; odd ratio 4.26 [1.44-18.62]) compared with TPC. The objective response rate of both groups was similar. Pathway enrichment analysis in hormone receptor-positive, human epidermal growth factor receptor 2-negative patients demonstrated differentially modulated pathways implicated in DNA repair and transcriptional regulation in those with reduced response to capecitabine/gemcitabine, and pathways associated with cell cycle regulation in those with reduced response to palbociclib. Our study shows that PDO-based functional precision medicine is a feasible and effective strategy for MBC treatment optimization and customization.

18.
Dev Cell ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38640925

RESUMO

Although the antagonistic effects of host resistance against biotrophic and necrotrophic pathogens have been documented in various plants, the underlying mechanisms are unknown. Here, we investigated the antagonistic resistance mediated by the transcription factor ETHYLENE-INSENSITIVE3-LIKE 3 (OsEIL3) in rice. The Oseil3 mutant confers enhanced resistance to the necrotroph Rhizoctonia solani but greater susceptibility to the hemibiotroph Magnaporthe oryzae and biotroph Xanthomonas oryzae pv. oryzae. OsEIL3 directly activates OsERF040 transcription while repressing OsWRKY28 transcription. The infection of R. solani and M. oryzae or Xoo influences the extent of binding of OsEIL3 to OsWRKY28 and OsERF040 promoters, resulting in the repression or activation of both salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways and enhanced susceptibility or resistance, respectively. These results demonstrate that the distinct effects of plant immunity to different pathogen types are determined by two transcription factor modules that control transcriptional reprogramming and the SA and JA pathways.

19.
Sci Total Environ ; 926: 171658, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38490411

RESUMO

Till now, microplastics/nano-plastics(M/NPs) have received a lot of attention as emerging contaminant. As a typical but complex porous medium, soil is not only a large reservoir of M/NPs but also a gateway for M/NPs to enter groundwater. Therefore, the review of the factors controlling the transport behavior of M/NPs in porous media can provide important guidance for the risk assessment of M/NPs in soil and groundwater. In this study, the key factors controlling the transport behavior of M/NPs in porous media are systematically divided into three groups: (1) nature of M/NPs affecting M/NPs transport in porous media, (2) nature of flow affecting M/NPs transport in porous media, (3) nature of porous media affecting M/NPs transport. In each group, the specific control factors for M/NPs transport in porous media are discussed in detail. In addition to the above factors, some substances (colloids or pollutants) present in natural porous media (such as soil or sediments) will co-transport with M/NPs and affect its mobility. According to the different properties of co-transported substances, the mechanism of promoting or inhibiting the migration behavior of M/NPs in porous media was discussed. Finally, the limitations and future research directions of M/NPs transport in porous media are pointed out. This review can provide a useful reference for predicting the transport of M/NPs in natural porous media.

20.
Acta Biomater ; 178: 181-195, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447808

RESUMO

Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.3% in the high shear stress group (45 dyn/cm2). Furthermore, we found that Piezo1 served as a crucial mechanosensor for the differentiation and maturation of VELs. Mechanistically, the activation of Piezo1 by shear stress resulted in the influx of calcium ions, which in turn initiated the Akt signaling pathway and promoted the differentiation of hiPSCs into mature VELs. Moreover, VELs cultured on decellularized heart valves (DHVs) exhibited a notable propensity for proliferation, robust adhesion properties, and antithrombotic characteristics, which were dependent on the activation of the Piezo1 channel. Overall, our study demonstrated that proper shear stress activated the Piezo1 channel to facilitate the differentiation and maturation of hiPSC-VELs via the Akt pathway, providing a potential cell source for regenerative medicine, drug screening, pathogenesis, and disease modeling. STATEMENT OF SIGNIFICANCE: This is the first research that systematically analyzes the effect of shear stress on valvular endothelial-like cells (VELs) derived from human induced pluripotent stem cells (hiPSCs). Mechanistically, unidirectional shear stress activates Piezo1, resulting in an elevation of calcium levels, which triggers the Akt signaling pathway and then facilitates the differentiation of functional maturation VELs. After exposure to shear stress, the VELs exhibited enhanced proliferation, robust adhesion capabilities, and antithrombotic characteristics while being cultured on decellularized heart valves. Thus, it is of interest to develop hiPSCs-VELs using shear stress and the Piezo1 channel provides insights into the functional maturation of valvular endothelial cells, thereby serving as a catalyst for potential applications in the development of therapeutic and tissue-engineered heart valves in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células Endoteliais , Cálcio/metabolismo , Fibrinolíticos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular/fisiologia , Endotélio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...