Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(11): 4922-4934, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37932955

RESUMO

In spite of the biocompatible, nontoxic, and radiolucent properties of polyetheretherketone (PEEK), its biologically inert surface compromises its use in dental, orthopedic, and spine fusion industries. Many efforts have been made to improve the biological performance of PEEK implants, from bioactive coatings to composites using titanium alloys or hydroxyapatite and changing the surface properties by chemical and physical methods. Directed plasma nanosynthesis (DPNS) is an atomic-scale nanomanufacturing technique that changes the surface topography and chemistry of solids via low-energy ion bombardment. In this study, PEEK samples were nanopatterned by using argon ion irradiation by DPNS to yield active nanoporous biomaterial surface. PEEK surfaces modified with two doses of low and high fluence, corresponding to 1.0 × 1017 and 1.0 × 1018 ions/cm2, presented pore sizes of 15-25 and 60-90 nm, respectively, leaving exposed PEEK fibers and an increment of roughness of nearly 8 nm. The pores per unit area were closely related for high fluence PEEK and low fluence PEEK surfaces, with 129.11 and 151.72 pore/µm2, respectively. The contact angle significantly decreases in hydrophobicity-hydrophilicity tests for the irradiated PEEK surface to ∼46° from a control PEEK value of ∼74°. These super hydrophilic substrates had 1.6 times lower contact angle compared to the control sample revealing a rough surface of 20.5 nm only at higher fluences when compared to control and low fluences of 12.16 and 14.03 nm, respectively. These super hydrophilic surfaces in both cases reached higher cell viability with ∼13 and 34% increase, respectively, compared to unmodified PEEK, with an increased expression of alkaline phosphatase at 7 days on higher fluences establishing a higher affinity for preosteblasts with increased cellular activity, thus revealing successful and improved integration with the implant material, which can potentially be used in bone tissue engineering.


Assuntos
Nanoporos , Fosfatase Alcalina , Ligas , Íons , Cetonas
2.
Nat Commun ; 14(1): 6676, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865629

RESUMO

Recent advancements in artificial intelligence have witnessed human-level performance; however, AI-enabled cognitive assistance for therapeutic procedures has not been fully explored nor pre-clinically validated. Here we propose AI-Endo, an intelligent surgical workflow recognition suit, for endoscopic submucosal dissection (ESD). Our AI-Endo is trained on high-quality ESD cases from an expert endoscopist, covering a decade time expansion and consisting of 201,026 labeled frames. The learned model demonstrates outstanding performance on validation data, including cases from relatively junior endoscopists with various skill levels, procedures conducted with different endoscopy systems and therapeutic skills, and cohorts from international multi-centers. Furthermore, we integrate our AI-Endo with the Olympus endoscopic system and validate the AI-enabled cognitive assistance system with animal studies in live ESD training sessions. Dedicated data analysis from surgical phase recognition results is summarized in an automatically generated report for skill assessment.


Assuntos
Endometriose , Ressecção Endoscópica de Mucosa , Animais , Feminino , Humanos , Ressecção Endoscópica de Mucosa/educação , Ressecção Endoscópica de Mucosa/métodos , Inteligência Artificial , Fluxo de Trabalho , Endoscopia , Aprendizagem
3.
J Biomed Mater Res A ; 111(12): 1850-1865, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37334879

RESUMO

Stress shielding and osseointegration are two main challenges in bone regeneration, which have been targeted successfully by chemical and physical surface modification methods. Direct irradiation synthesis (DIS) is an energetic ion irradiation method that generates self-organized nanopatterns conformal to the surface of materials with complex geometries (e.g., pores on a material surface). This work exposes porous titanium samples to energetic argon ions generating nanopatterning between and inside pores. The unique porous architected titanium (Ti) structure is achieved by mixing Ti powder with given amounts of spacer NaCl particles (vol % equal to 30%, 40%, 50%, 60%, and 70%), compacted and sintered, and combined with DIS to generate a porous Ti with bone-like mechanical properties and hierarchical topography to enhance Ti osseointegration. The porosity percentages range between 25% and 30% using 30 vol % NaCl space-holder (SH) volume percentages to porosity rates of 63%-68% with SH volume of 70 vol % NaCl. Stable and reproducible nanopatterning on the flat surface between pores, inside pits, and along the internal pore walls are achieved, for the first time on any porous biomaterial. Nanoscale features were observed in the form of nanowalls and nanopeaks of lengths between 100 and 500 nm, thicknesses of 35-nm and heights between 100 and 200 nm on average. Bulk mechanical properties that mimic bone-like structures were observed along with increased wettability (by reducing contact values). Nano features were cell biocompatible and enhanced in vitro pre-osteoblast differentiation and mineralization. Higher alkaline phosphatase levels and increased calcium deposits were observed on irradiated 50 vol % NaCl samples at 7 and 14 days. After 24 h, nanopatterned porous samples decreased the number of attached macrophages and the formation of foreign body giant cells, confirming nanoscale tunability of M1-M2 immuno-activation with enhanced osseointegration.


Assuntos
Osseointegração , Titânio , Titânio/química , Porosidade , Argônio , Cloreto de Sódio , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...