Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2022: 9493710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799888

RESUMO

Oxidative stress and inflammation are implicated in the development of sepsis-related acute lung injury (ALI). MicroRNA-1224-5p (miR-1224-5p) plays critical roles in regulating inflammatory response and reactive oxygen species (ROS) production. The present study is aimed at investigating the role and underlying mechanisms of miR-1224-5p in sepsis-related ALI. Mice were intratracheally injected with lipopolysaccharide (LPS, 5 mg/kg) for 12 h to induce sepsis-related ALI. To manipulate miR-1224-5p level, mice were intravenously injected with the agomir, antagomir, or matched controls for 3 consecutive days. Murine peritoneal macrophages were stimulated with LPS (100 ng/mL) for 6 h to further validate the role of miR-1224-5p in vitro. To inhibit adenosine 5'-monophosphate-activated protein kinase alpha (AMPKα) or peroxisome proliferator activated receptor-gamma (PPAR-γ), compound C or GW9662 was used in vivo and in vitro. We found that miR-1224-5p levels in lungs were elevated by LPS injection, and that the miR-1224-5p antagomir significantly alleviated LPS-induced inflammation, oxidative stress, and ALI in mice. Conversely, the miR-1224-5p agomir aggravated inflammatory response, ROS generation, and pulmonary dysfunction in LPS-treated mice. In addition, the miR-1224-5p antagomir reduced, while the miR-1224-5p agomir aggravated LPS-induced inflammation and oxidative stress in murine peritoneal macrophages. Further findings revealed that miR-1224-5p is directly bound to the 3'-untranslated regions of PPAR-γ and subsequently suppressed PPAR-γ/AMPKα axis, thereby aggravating LPS-induced ALI in vivo and in vitro. We demonstrate for the first time that endogenous miR-1224-5p is a critical pathogenic factor for inflammation and oxidative damage during LPS-induced ALI through inactivating PPAR-γ/AMPKα axis. Targeting miR-1224-5p may help to develop novel approaches to treat sepsis-related ALI.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Sepse , Regiões 3' não Traduzidas , Proteínas Quinases Ativadas por AMP , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Antagomirs , Inflamação , Lipopolissacarídeos/farmacologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Espécies Reativas de Oxigênio/metabolismo , Sepse/complicações , Sepse/genética
2.
Immunol Invest ; 51(5): 1407-1422, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34251977

RESUMO

BACKGROUND: Inflammation and oxidative stress contribute to the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury (ALI). MicroRNA-762 (miR-762) has been implicated in the progression of inflammation and oxidative stress; however, its role in ALI remains unclear. In this study, we aim to investigate the role and underlying mechanisms of miR-762 in LPS-induced ALI. METHODS: Mice were intravenously injected with miR-762 antagomir, agomir or the negative controls for 3 consecutive days and then received a single intratracheal instillation of LPS (5 mg/kg) for 12 h to establish ALI model. Adenoviral vectors were used to knock down the endogenous SIRT7 expression. RESULTS: An increased miR-762 expression was detected in LPS-treated lungs. miR-762 antagomir significantly reduced inflammation, oxidative stress and ALI in mice, while the mice with miR-762 agomir treatment exhibited a deleterious phenotype. Besides, we found that SIRT7 upregulation was essential for the pulmonoprotective effects of miR-762 antagomir, and that SIRT7 silence completely abolished the anti-inflammatory and anti-oxidant capacities of miR-762 antagomir. CONCLUSION: miR-762 is implicated in the pathogenesis of LPS-induced ALI via modulating inflammation and oxidative stress, which depends on its regulation of SIRT7 expression. It might be a valuable therapeutic target for the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Sirtuínas , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Antagomirs/farmacologia , Progressão da Doença , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo , Sirtuínas/genética , Sirtuínas/metabolismo , Regulação para Cima
3.
Immunopharmacol Immunotoxicol ; 44(1): 47-57, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34783628

RESUMO

OBJECTIVES: Sepsis-associated acute lung injury (ALI) is a clinically severe respiratory disorder and remains the leading cause of multiple organ failure and mortality. Herein, we used lipopolysaccharide (LPS) to generate sepsis-induced ALI and try to explore the role and mechanism of microRNA-92a-3p (miR-92a-3p) in this process. METHODS: Mice were intravenously injected with miR-92a-3p agomir, antagomir and negative controls for 3 consecutive days and then were intratracheally instillated by LPS (5 mg/kg) for 12 h. To knock down the endogenous A-kinase anchoring protein 1 (AKAP1), mice were intratracheally injected with recombinant adenovirus carrying the short hairpin RNA targeting AKAP1 (shAkap1) at 1 week before LPS administration. RESULTS: miR-92a-3p level was significantly upregulated in the lungs by LPS injection. miR-92a-3p antagomir reduced LPS-induced intrapulmonary inflammation and oxidative stress, thereby preventing pulmonary injury and dysfunction. In contrast, miR-92a-3p agomir aggravated LPS-induced intrapulmonary inflammation, oxidative stress, pulmonary injury and dysfunction. Moreover, we reported that AKAP1 upregulation was required for the beneficial effects of miR-92a-3p antagomir, and that AKAP1 knockdown completely abolished the anti-inflammatory and antioxidant capacities of miR-92a-3p antagomir. CONCLUSION: Our data identify that miR-92a-3p modulates LPS-induced intrapulmonary inflammation, oxidative stress and ALI via AKAP1 in mice.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Sepse , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Lipopolissacarídeos/toxicidade , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo
4.
Int J Mol Med ; 39(5): 1224-1232, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28339018

RESUMO

Accumulating evidence suggests that autophagy is closely related to the pathogenesis of osteoarthritis (OA). The aim of this study was to determine the changes in autophagy during the progression of OA and to elucidate the specific role of autophagy in OA. For this purpose, a cellular model of OA was generated by stimulating SW1353 cells with interleukin (IL)-1ß and a rabbit model of OA was also established by an intra-articular injection of collagenase, followed by treatment with the autophagy specific inhibitor, 3-methyladenine (3-MA). Cell viability was analyzed by MTS assay, and the mRNA expression levels of matrix metalloproteinases (MMP)-13 and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by RT-qPCR. Cartilage degeneration was examined under a light microscope, and autophagosome and chondrocyte degeneration was observed by transmission electron microscopy. The protein expression of Beclin-1 and light chain 3 (LC3)B was evaluated by western blot analysis and immunofluorescence staining. We found that the autophagy was enhanced during the early stages and was weakened during the late stages of experimental OA. The inhibition of autophagy by 3-MA significantly aggravated the degeneration of chondrocytes and cartilage in experimental OA. Our results thus determine the changes in autophagy during different stages of OA, as well as the role of impaired autophagy in the development of OA. Our data suggest that the regulation of autophagy may be a potential therapeutic strategy with which to attenuate OA.


Assuntos
Autofagia , Osteoartrite/etiologia , Osteoartrite/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Biomarcadores , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/ultraestrutura , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Humanos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Osteoartrite/patologia , Coelhos , Inibidor Tecidual de Metaloproteinase-1/metabolismo
5.
BMC Musculoskelet Disord ; 17: 150, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27052304

RESUMO

BACKGROUND: Recent studies have shown that autophagy was associated with the development of osteoarthritis (OA), the purpose of this research was to determine the exact role of autophagy in OA and investigate effective therapeutic drugs to inhibit the pathological progression of OA. METHODS: In this study, a cellular OA model was generated by stimulating SW1353 cells with IL-1ß and a rabbit OA model was established by intra-articular injection of collagenase, followed by treatment with Torin 1 or 3-Methyladenine (3-MA). The mRNA expression levels of VEGF, MMP-13 and TIMP-1 were determined by quantitative real-time PCR. The caitilage degeneration was examined by histological evaluation, chondrocytes degeneration and autophagosomes were observed by transmission electron microscopy. Expression levels of Beclin-1 and LC3 were evaluated by western blotting and immunofluorescence. RESULTS: The degeneration of SW 1353 cells, cartilage and chondrocytes was related to the loss of autophagy in experimental OA. 3-MA increased the severity of degeneration of cells and cartilage by autophagy inhibition, while Torin 1 reduced that by autophagy activation. CONCLUSIONS: The loss of autophagy is linked with the experimental OA and autophagy may play a protective role in the pathogenesis of OA. Treatment of Torin 1 can inhibit the degenerative changes of experimental OA by activating autophagy and it may be a useful therapeutic drug for OA.


Assuntos
Artrite Experimental/tratamento farmacológico , Autofagia/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Naftiridinas/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Proteína Beclina-1 , Cartilagem/metabolismo , Cartilagem/ultraestrutura , Linhagem Celular Tumoral , Condrócitos/metabolismo , Condrócitos/ultraestrutura , Citoproteção , Humanos , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Coelhos , Índice de Gravidade de Doença , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...