Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(50): eadi2134, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100583

RESUMO

The lithosphere, as the outermost solid layer of our planet, preserves a progressively more fragmentary record of geological events and processes from Earth's history the further back in time one looks. Thus, the evolution of lithospheric thickness and its cascading impacts in Earth's tectonic system are presently unknown. Here, we track the lithospheric thickness history using machine learning based on global lithogeochemical data of basalt. Our results demonstrate that four marked lithospheric thinning events occurred during the Paleoarchean, early Paleoproterozoic, Neoproterozoic, and Phanerozoic with intermediate thickening scenarios. These events respectively correspond to supercontinent/supercraton breakup and assembly periods. Causality investigation further indicates that crustal metamorphic and deformation styles are the feedback of lithospheric thickness. Cross-correlation between lithospheric thickness and metamorphic thermal gradients records the transition from intraoceanic subduction systems to continental margin and intraoceanic in the Paleoarchean and Mesoarchean and a progressive emergence of large thick continents that allow supercontinent growth, which promoted assembly of the first supercontinent during the Neoarchean.

2.
Science ; 367(6475): 272-277, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31949075

RESUMO

One great challenge in understanding the history of life is resolving the influence of environmental change on biodiversity. Simulated annealing and genetic algorithms were used to synthesize data from 11,000 marine fossil species, collected from more than 3000 stratigraphic sections, to generate a new Cambrian to Triassic biodiversity curve with an imputed temporal resolution of 26 ± 14.9 thousand years. This increased resolution clarifies the timing of known diversification and extinction events. Comparative analysis suggests that partial pressure of carbon dioxide (Pco2) is the only environmental factor that seems to display a secular pattern similar to that of biodiversity, but this similarity was not confirmed when autocorrelation within that time series was analyzed by detrending. These results demonstrate that fossil data can provide the temporal and taxonomic resolutions necessary to test (paleo)biological hypotheses at a level of detail approaching those of long-term ecological analyses.


Assuntos
Biodiversidade , Dióxido de Carbono , Extinção Biológica , Invertebrados/classificação , Animais , Evolução Biológica , Fósseis , Invertebrados/genética , Pressão Parcial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...