Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Imeta ; 3(2): e169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882494

RESUMO

The infant gut microbiome is increasingly recognized as a reservoir of antibiotic resistance genes, yet the assembly of gut resistome in infants and its influencing factors remain largely unknown. We characterized resistome in 4132 metagenomes from 963 infants in six countries and 4285 resistance genes were observed. The inherent resistome pattern of healthy infants (N = 272) could be distinguished by two stages: a multicompound resistance phase (Months 0-7) and a tetracycline-mupirocin-ß-lactam-dominant phase (Months 8-14). Microbial taxonomy explained 40.7% of the gut resistome of healthy infants, with Escherichia (25.5%) harboring the most resistance genes. In a further analysis with all available infants (N = 963), we found age was the strongest influencer on the resistome and was negatively correlated with the overall resistance during the first 3 years (p < 0.001). Using a random-forest approach, a set of 34 resistance genes could be used to predict age (R 2 = 68.0%). Leveraging microbial host inference analyses, we inferred the age-dependent assembly of infant resistome was a result of shifts in the gut microbiome, primarily driven by changes in taxa that disproportionately harbor resistance genes across taxa (e.g., Escherichia coli more frequently harbored resistance genes than other taxa). We performed metagenomic functional profiling and metagenomic assembled genome analyses whose results indicate that the development of gut resistome was driven by changes in microbial carbohydrate metabolism, with an increasing need for carbohydrate-active enzymes from Bacteroidota and a decreasing need for Pseudomonadota during infancy. Importantly, we observed increased acquired resistance genes over time, which was related to increased horizontal gene transfer in the developing infant gut microbiome. In summary, infant age was negatively correlated with antimicrobial resistance gene levels, reflecting a composition shift in the gut microbiome, likely driven by the changing need for microbial carbohydrate metabolism during early life.

2.
Front Public Health ; 11: 1287678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106890

RESUMO

Introduction: Given the rapid geographic spread of dengue and the growing frequency and intensity of heavy rainfall events, it is imperative to understand the relationship between these phenomena in order to propose effective interventions. However, studies exploring the association between heavy rainfall and dengue infection risk have reached conflicting conclusions, potentially due to the neglect of prior water availability in mosquito breeding sites as an effect modifier. Methods: In this study, we addressed this research gap by considering the impact of prior water availability for the first time. We measured prior water availability as the cumulative precipitation over the preceding 8 weeks and utilized a distributed lag non-linear model stratified by the level of prior water availability to examine the association between dengue infection risk and heavy rainfall in Guangzhou, a dengue transmission hotspot in southern China. Results: Our findings suggest that the effects of heavy rainfall are likely to be modified by prior water availability. A 24-55 day lagged impact of heavy rainfall was associated with an increase in dengue risk when prior water availability was low, with the greatest incidence rate ratio (IRR) of 1.37 [95% credible interval (CI): 1.02-1.83] occurring at a lag of 27 days. In contrast, a heavy rainfall lag of 7-121 days decreased dengue risk when prior water availability was high, with the lowest IRR of 0.59 (95% CI: 0.43-0.79), occurring at a lag of 45 days. Discussion: These findings may help to reconcile the inconsistent conclusions reached by previous studies and improve our understanding of the complex relationship between heavy rainfall and dengue infection risk.


Assuntos
Dengue , Animais , Dengue/epidemiologia , Água , Fatores de Tempo , Incidência , China/epidemiologia
3.
Res Sq ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693392

RESUMO

Background: Given the rapid geographic spread of dengue and the growing frequency and intensity of heavy rainfall events, it is imperative to understand the relationship between these phenomena in order to propose effective interventions. However, studies exploring the association between heavy rainfall and dengue infection risk have reached conflicting conclusions. Methods: In this study, we use a distributed lag non-linear model to examine the association between dengue infection risk and heavy rainfall in Guangzhou, a dengue transmission hotspot in southern China, stratified by prior water availability. Results: Our findings suggest that the effects of heavy rainfall are likely to be modified by prior water availability. A 24-55 day lagged impact of heavy rainfall was associated with an increase in dengue risk when prior water availability was low, with the greatest incidence rate ratio (IRR) of 1.37 (95% credible interval (CI): 1.02-1.83) occurring at a lag of 27 days. In contrast, a heavy rainfall lag of 7-121 days decreased dengue risk when prior water availability was high, with the lowest IRR of 0.59 (95% CI: 0.43-0.79), occurring at a lag of 45 days. Conclusions: These findings may help to reconcile the inconsistent conclusions reached by previous studies and improve our understanding of the complex relationship between heavy rainfall and dengue infection risk.

4.
BMC Infect Dis ; 23(1): 390, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308872

RESUMO

BACKGROUND: Although several pathways have been proposed as the prerequisite for a safe phase-out in China, it is not clear which of them are the most important for keeping the mortality rate low, what thresholds should be achieved for these most important interventions, and how the thresholds change with the assumed key epidemiological parameters and population characteristics. METHODS: We developed an individual-based model (IBM) to simulate the transmission of the Omicron variant in the synthetic population, accounting for the age-dependent probabilities of severe clinical outcomes, waning vaccine-induced immunity, increased mortality rates when hospitals are overburdened, and reduced transmission when self-isolated at home after testing positive. We applied machine learning algorithms on the simulation outputs to examine the importance of each intervention parameter and the feasible intervention parameter combinations for safe exits, which is defined as having mortality rates lower than that of influenza in China (14.3 per 100, 000 persons). RESULTS: We identified vaccine coverage in those above 70 years old, number of ICU beds per capita, and the availability of antiviral treatment as the most important interventions for safe exits across all studied locations, although the thresholds required for safe exits vary remarkably with the assumed vaccine effectiveness, as well as the age structure, age-specific vaccine coverage, community healthcare capacity of the studied locations. CONCLUSIONS: The analytical framework developed here can provide the basis for further policy decisions that incorporate considerations about economic costs and societal impacts. Achieving safe exits from the Zero-COVID policy is possible, but challenging for China's cities. When planning for safe exits, local realities such as the age structure and current age-specific vaccine coverage must be taken into consideration.


Assuntos
COVID-19 , Humanos , Idoso , SARS-CoV-2 , China , Políticas
5.
PNAS Nexus ; 2(5): pgad127, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37143866

RESUMO

Modeling the global dynamics of emerging infectious diseases (EIDs) like COVID-19 can provide important guidance in the preparation and mitigation of pandemic threats. While age-structured transmission models are widely used to simulate the evolution of EIDs, most of these studies focus on the analysis of specific countries and fail to characterize the spatial spread of EIDs across the world. Here, we developed a global pandemic simulator that integrates age-structured disease transmission models across 3,157 cities and explored its usage under several scenarios. We found that without mitigations, EIDs like COVID-19 are highly likely to cause profound global impacts. For pandemics seeded in most cities, the impacts are equally severe by the end of the first year. The result highlights the urgent need for strengthening global infectious disease monitoring capacity to provide early warnings of future outbreaks. Additionally, we found that the global mitigation efforts could be easily hampered if developed countries or countries near the seed origin take no control. The result indicates that successful pandemic mitigations require collective efforts across countries. The role of developed countries is vitally important as their passive responses may significantly impact other countries.

6.
Biometrics ; 79(2): 1507-1519, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35191022

RESUMO

Passive surveillance systems are widely used to monitor diseases occurrence over wide spatial areas due to their cost-effectiveness and integration into broadly distributed healthcare systems. However, such systems are generally associated with imperfect ascertainment of disease cases and with heterogeneous capture probabilities arising from factors such as differential access to care. Augmenting passive surveillance systems with other surveillance efforts provides a way to estimate the true number of incident cases. We develop a hierarchical modeling framework for analyzing data from multiple surveillance systems that allows for individual-level covariate-dependent heterogeneous capture probabilities, and borrows information across surveillance sites to improve estimation of the true number of incident cases. Inference is carried out via a two-stage Bayesian procedure. Simulation studies illustrated superior performance of the proposed approach with respect to bias, root mean square error, and coverage compared to a model that does not borrow information across sites. We applied the proposed model to data from three surveillance systems reporting pulmonary tuberculosis (PTB) cases in a major center of ongoing transmission in China. The analysis yielded bias-corrected estimates of PTB cases from the passive system and led to the identification of risk factors associated with PTB rates, as well as factors influencing the operating characteristics of the implemented surveillance systems.


Assuntos
Vigilância em Saúde Pública , Humanos , Simulação por Computador , Teorema de Bayes , Análise de Dados , Tuberculose Pulmonar/epidemiologia , Fatores de Risco
7.
PLoS Comput Biol ; 18(9): e1010575, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36166479

RESUMO

With the aid of laboratory typing techniques, infectious disease surveillance networks have the opportunity to obtain powerful information on the emergence, circulation, and evolution of multiple genotypes, serotypes or other subtypes of pathogens, informing understanding of transmission dynamics and strategies for prevention and control. The volume of typing performed on clinical isolates is typically limited by its ability to inform clinical care, cost and logistical constraints, especially in comparison with the capacity to monitor clinical reports of disease occurrence, which remains the most widespread form of public health surveillance. Viewing clinical disease reports as arising from a latent mixture of pathogen subtypes, laboratory typing of a subset of clinical cases can provide inference on the proportion of clinical cases attributable to each subtype (i.e., the mixture components). Optimizing protocols for the selection of isolates for typing by weighting specific subpopulations, locations, time periods, or case characteristics (e.g., disease severity), may improve inference of the frequency and distribution of pathogen subtypes within and between populations. Here, we apply the Disease Surveillance Informatics Optimization and Simulation (DIOS) framework to simulate and optimize hand foot and mouth disease (HFMD) surveillance in a high-burden region of western China. We identify laboratory surveillance designs that significantly outperform the existing network: the optimal network reduced mean absolute error in estimated serotype-specific incidence rates by 14.1%; similarly, the optimal network for monitoring severe cases reduced mean absolute error in serotype-specific incidence rates by 13.3%. In both cases, the optimal network designs achieved improved inference without increasing subtyping effort. We demonstrate how the DIOS framework can be used to optimize surveillance networks by augmenting clinical diagnostic data with limited laboratory typing resources, while adapting to specific, local surveillance objectives and constraints.


Assuntos
Doença de Mão, Pé e Boca , China/epidemiologia , Genótipo , Humanos , Incidência , Lactente , Sorogrupo
8.
Trop Med Infect Dis ; 7(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36136620

RESUMO

Background: With the progress of urbanization, the mobility of people has gradually increased, which has led to the further spread of dengue fever. This study evaluated the transmissibility of dengue fever within districts and between different districts in Zhanjiang City to provide corresponding advice for cross-regional prevention and control. Methods: A mathematical model of transmission dynamics was developed to explore the transmissibility of the disease and to compare that between different regions. Results: A total of 467 DF cases (6.38 per 100,000 people) were reported in Zhanjiang City in 2018. In the model, without any intervention, the number of simulated cases in this epidemic reached about 950. The dengue fever transmissions between districts varied within and between regions. When the spread of dengue fever from Chikan Districts to other districts was cut off, the number of cases in other districts dropped significantly or even to zero. When the density of mosquitoes in Xiashan District was controlled, the dengue fever epidemic in Xiashan District was found to be significantly alleviated. Conclusions: When there is a dengue outbreak, timely measures can effectively control it from developing into an epidemic. Different prevention and control measures in different districts could efficiently reduce the risk of disease transmission.

9.
Environ Res ; 209: 112754, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35074347

RESUMO

Many studies have illustrated adverse effects of short-term exposure to air pollution on human health, which usually assumes a linear exposure-response (E-R) function in the delineation of health effects due to air pollution. However, nonlinearity may exist in the association between air pollutant concentrations and health outcomes such as adult pneumonia hospital visits, and there is a research gap in understanding the nonlinearity. Here, we utilized both the distributed lag model (DLM) and nonlinear model (DLNM) to compare the linear and nonlinear impacts of air pollution on adult pneumonia hospital visits in the coastal city of Qingdao, China. While both models show adverse effects of air pollutants on adult pneumonia hospital visits, the DLNM shows an attenuation of E-R curves at high concentrations. Moreover, the DLNM may reveal delayed health effects that may be missed in the DLM, e.g., ozone exposure and pneumonia hospital visits. With the stratified analysis of air pollutants on adult pneumonia hospital visits, both models consistently reveal that the influence of air pollutants is higher during the cold season than during the warm season. Nevertheless, they may behave differently in terms of other subgroups, such as age, gender and visit types. For instance, while no significant impact due to PM2.5 in any of the subgroups abovementioned emerges based on DLM, the results from DLNM indicate statistically significant impacts for the subgroups of elderly, female and emergency department (ED) visits. With respect to adjustment by two-pollutants, PM10 effect estimates for pneumonia hospital visits were the most robust in both DLM and DLNM, followed by NO2 and SO2 based on the DLNM. Considering the estimated health effects of air pollution relying on the assumed E-R functions, our results demonstrate that the traditional linear association assumptions may overlook some potential health risks.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pneumonia , Adulto , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , China/epidemiologia , Feminino , Hospitais , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/epidemiologia
10.
Environ Sci Technol ; 56(3): 1801-1810, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35015513

RESUMO

A simulation model was developed aimed at assisting local public health authorities in exploring strategies for the suppression of SARS-CoV-2 transmission. A mechanistic modeling framework is utilized based on the daily airborne exposure of individuals defined in terms of inhaled viruses. Comparison of model outputs and observed data confirms that the model can generate realistic patterns of secondary cases. In the example investigated, the highest risk of being newly infected was among young adults, males, and people living in large households. Among risky occupations are food preparation and serving, personal care and service, sales, and production-related occupations. Results also show a pattern consistent with superspreading with 70% of initial cases who do not transmit at all while 13.4% of primary cases contribute 80% of secondary cases. The impacts of school closure and masking on the synthetic population are very small, but for students, school closure resulted in more time at home and increased secondary cases among them by over 25%. Requiring masks at schools decreased the case count by 80%. We conclude that the simulator can be useful in exploring local intervention scenarios and provides output useful in assessing the confidence that might be placed on its predictions.


Assuntos
COVID-19 , Simulação por Computador , COVID-19/prevenção & controle , COVID-19/transmissão , Transmissão de Doença Infecciosa , Humanos , Masculino , Máscaras , Fatores de Risco , SARS-CoV-2 , Instituições Acadêmicas , Adulto Jovem
11.
Sci Total Environ ; 810: 152235, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890677

RESUMO

The distribution of bamboo is sensitive to climate change and is also potentially affected by increasing atmospheric CO2 concentrations due to its C3 photosynthetic pathway. Yet the effect of CO2 in climate impact assessments of potential changes in bamboo distribution has to date been overlooked. In this study, we proposed a simple and quantitative method to incorporate the impact of atmospheric CO2 concentration into a species distribution modeling framework. To do so, we implemented 10 niche modeling algorithms with regionally downscaled climatic variables and combined field campaign observations. We assessed future climate impacts on the distribution of an economically and ecologically important and widely distributed bamboo species in Madagascar, and examined the effect of increasing CO2 on future projections. Our results suggested that future climatic changes negatively impact potential bamboo distribution in Madagascar, leading to a decline of 34.8% of climatic suitability and a decline of 63.6 ± 3.2% in suitable areas towards 2100 under RCP 8.5. However, increasing atmosphere CO2 offsets the climate impact for bamboo, and led to a smaller reduction of 19.8% in suitability and a potential distribution expansion of +111.6 ± 9.8% in newly suitable areas. We also found that the decline in climatic suitability for bamboo was related to increasing monthly potential evapotranspiration of the warmest quarter and minimum temperature of the warmest month. Conversely, the decreasing isothermality and increasing precipitation of the warmest quarter contributed to projected increase in bamboo-suitable areas. Our study suggested that elevated CO2 may mitigate the decrease in climatic suitability and increase bamboo-suitable areas, through enhancing water use efficiency and decreasing potential evapotranspiration. Our results highlight the importance of accounting for the CO2 effect on future plant species distributions, and provide a mechanistic approach to do so for ecosystems constrained by water.


Assuntos
Mudança Climática , Ecossistema , Dióxido de Carbono , Previsões , Madagáscar
13.
J R Soc Interface ; 18(177): 20200970, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33849340

RESUMO

School closures may reduce the size of social networks among children, potentially limiting infectious disease transmission. To estimate the impact of K-12 closures and reopening policies on children's social interactions and COVID-19 incidence in California's Bay Area, we collected data on children's social contacts and assessed implications for transmission using an individual-based model. Elementary and Hispanic children had more contacts during closures than high school and non-Hispanic children, respectively. We estimated that spring 2020 closures of elementary schools averted 2167 cases in the Bay Area (95% CI: -985, 5572), fewer than middle (5884; 95% CI: 1478, 11.550), high school (8650; 95% CI: 3054, 15 940) and workplace (15 813; 95% CI: 9963, 22 617) closures. Under assumptions of moderate community transmission, we estimated that reopening for a four-month semester without any precautions will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1) and elementary school teachers (4.1%, 95% CI: -1.7, 12.0). However, we found that reopening policies for elementary schools that combine universal masking with classroom cohorts could result in few within-school transmissions, while high schools may require masking plus a staggered hybrid schedule. Stronger community interventions (e.g. remote work, social distancing) decreased the risk of within-school transmission across all measures studied, with the influence of community transmission minimized as the effectiveness of the within-school measures increased.


Assuntos
COVID-19 , Criança , Humanos , Distanciamento Físico , Políticas , SARS-CoV-2 , Instituições Acadêmicas
14.
Parasit Vectors ; 14(1): 22, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407778

RESUMO

BACKGROUND: Due to an increase in mosquito habitats and the lack facilities to carry out basic mosquito control, construction sites in China are more likely to experience secondary dengue fever infection after importation of an initial infection, which may then increase the number of infections in the neighboring communities and the chance of community transmission. The aim of this study was to investigate how to effectively reduce the transmission of dengue fever at construction sites and the neighboring communities. METHODS: The Susceptible-Exposed-Infectious/Asymptomatic-Recovered (SEIAR) model of human and SEI model of mosquitoes were developed to estimate the transmission of dengue virus between humans and mosquitoes within the construction site and within a neighboring community, as well between each of these. With the calibrated model, we further estimated the effectiveness of different intervention scenarios targeting at reducing the transmissibility at different locations (i.e. construction sites and community) with the total attack rate (TAR) and the duration of the outbreak (DO). RESULTS: A total of 102 construction site-related and 131 community-related cases of dengue fever were reported in our area of study. Without intervention, the number of cases related to the construction site and the community rose to 156 (TAR: 31.25%) and 10,796 (TAR: 21.59%), respectively. When the transmission route from mosquitoes to humans in the community was cut off, the number of community cases decreased to a minimum of 33 compared with other simulated scenarios (TAR: 0.068%, DO: 60 days). If the transmission route from infectious mosquitoes in the community and that from the construction site to susceptible people on the site were cut off at the same time, the number of cases on the construction site dropped to a minimum of 74 (TAR: 14.88%, DO: 66 days). CONCLUSIONS: To control the outbreak of dengue fever effectively on both the construction site and in the community, interventions needed to be made both within the community and from the community to the construction site. If interventions only took place within the construction site, the number of cases on the construction site would not be reduced. Also, interventions implemented only within the construction site or between the construction site and the community would not lead to a reduction in the number of cases in the community.


Assuntos
Dengue/prevenção & controle , Dengue/transmissão , Infecções Assintomáticas/epidemiologia , China/epidemiologia , Controle de Doenças Transmissíveis , Indústria da Construção , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/fisiologia , Surtos de Doenças/prevenção & controle , Suscetibilidade a Doenças/epidemiologia , Suscetibilidade a Doenças/virologia , Humanos , Incidência , Modelos Teóricos , Controle de Mosquitos , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/virologia , Características de Residência , Local de Trabalho
15.
PLoS Comput Biol ; 16(12): e1008477, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33275606

RESUMO

Infectious disease surveillance systems provide vital data for guiding disease prevention and control policies, yet the formalization of methods to optimize surveillance networks has largely been overlooked. Decisions surrounding surveillance design parameters-such as the number and placement of surveillance sites, target populations, and case definitions-are often determined by expert opinion or deference to operational considerations, without formal analysis of the influence of design parameters on surveillance objectives. Here we propose a simulation framework to guide evidence-based surveillance network design to better achieve specific surveillance goals with limited resources. We define evidence-based surveillance design as an optimization problem, acknowledging the many operational constraints under which surveillance systems operate, the many dimensions of surveillance system design, the multiple and competing goals of surveillance, and the complex and dynamic nature of disease systems. We describe an analytical framework-the Disease Surveillance Informatics Optimization and Simulation (DIOS) framework-for the identification of optimal surveillance designs through mathematical representations of disease and surveillance processes, definition of objective functions, and numerical optimization. We then apply the framework to the problem of selecting candidate sites to expand an existing surveillance network under alternative objectives of: (1) improving spatial prediction of disease prevalence at unmonitored sites; or (2) estimating the observed effect of a risk factor on disease. Results of this demonstration illustrate how optimal designs are sensitive to both surveillance goals and the underlying spatial pattern of the target disease. The findings affirm the value of designing surveillance systems through quantitative and adaptive analysis of network characteristics and performance. The framework can be applied to the design of surveillance systems tailored to setting-specific disease transmission dynamics and surveillance needs, and can yield improved understanding of tradeoffs between network architectures.


Assuntos
Doenças Transmissíveis/epidemiologia , Simulação por Computador , Interpretação Estatística de Dados , Vigilância da População/métodos , Humanos
16.
Spat Spatiotemporal Epidemiol ; 35: 100341, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33138957

RESUMO

Disease surveillance data are important for monitoring disease burden and occurrence, and for informing a wide range of efforts to improve population health. Surveillance for infectious diseases may be conducted passively, relying on reports from healthcare facilities, or actively, involving surveys of the population at risk. Passive surveillance typically provides wide spatial coverage, but is subject to biases arising from differences in care-seeking behavior, diagnostic practices, and under-reporting. Active surveillance minimizes these biases, but is typically constrained to small areas and subpopulations due to resource limitations. Methods based on linkage of individual records between passive and active surveillance datasets provide a means to estimate and correct for the biases of each system, leveraging the size and coverage of passive surveillance and the quality of data in active surveillance. We develop a spatial Bayesian hierarchical model for bias-correcting data from both systems to yield an improved estimate of disease measures after adjusting for under-ascertainment. We apply the framework to data from a passive and an active surveillance system for pulmonary tuberculosis (PTB) in Sichuan, China, and estimate the average sensitivity of the active surveillance system at 70% (95% credible interval: 62%, 78%), and the passive system at 30% (95% CI: 24%, 35%). Passive surveillance sensitivity exhibited considerable spatial variability, and was positively associated with a site's gross domestic product per capita. Bias-corrected estimates of county-level PTB prevalence in the province in 2010 identified regions in the southeast with the highest PTB burden, yielding different geographic priorities than previous reports.


Assuntos
Viés , Vigilância da População , Análise Espaço-Temporal , Tuberculose Pulmonar/epidemiologia , China/epidemiologia , Humanos , Prevalência
17.
Proc Natl Acad Sci U S A ; 117(44): 27549-27555, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077583

RESUMO

Global food security is a major driver of population health, and food system collapse may have complex and long-lasting effects on health outcomes. We examined the effect of prenatal exposure to the Great Chinese Famine (1958-1962)-the largest famine in human history-on pulmonary tuberculosis (PTB) across consecutive generations in a major center of ongoing transmission in China. We analyzed >1 million PTB cases diagnosed between 2005 and 2018 in Sichuan Province using age-period-cohort analysis and mixed-effects metaregression to estimate the effect of the famine on PTB risk in the directly affected birth cohort (F1) and their likely offspring (F2). The analysis was repeated on certain sexually transmitted and blood-borne infections (STBBI) to explore potential mechanisms of the intergenerational effects. A substantial burden of active PTB in the exposed F1 cohort and their offspring was attributable to the Great Chinese Famine, with more than 12,000 famine-attributable active PTB cases (>1.23% of all cases reported between 2005 and 2018). An interquartile range increase in famine intensity resulted in a 6.53% (95% confidence interval [CI]: 1.19-12.14%) increase in the ratio of observed to expected incidence rate (incidence rate ratio, IRR) in the absence of famine in F1, and an 8.32% (95% CI: 0.59-16.6%) increase in F2 IRR. Increased risk of STBBI was also observed in F2. Prenatal and early-life exposure to malnutrition may increase the risk of active PTB in the exposed generation and their offspring, with the intergenerational effect potentially due to both within-household transmission and increases in host susceptibility.


Assuntos
Fome Epidêmica , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Inanição/complicações , Tuberculose Pulmonar/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Estudos de Coortes , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Fatores de Risco , Inanição/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/prevenção & controle , Adulto Jovem
18.
medRxiv ; 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32793934

RESUMO

Background Large-scale school closures have been implemented worldwide to curb the spread of COVID-19. However, the impact of school closures and re-opening on epidemic dynamics remains unclear. Methods We simulated COVID-19 transmission dynamics using an individual-based stochastic model, incorporating social-contact data of school-aged children during shelter-in-place orders derived from Bay Area (California) household surveys. We simulated transmission under observed conditions and counterfactual intervention scenarios between March 17-June 1, and evaluated various fall 2020 K-12 reopening strategies. Findings Between March 17-June 1, assuming children <10 were half as susceptible to infection as older children and adults, we estimated school closures averted a similar number of infections (13,842 cases; 95% CI: 6,290, 23,040) as workplace closures (15,813; 95% CI: 9,963, 22,617) and social distancing measures (7,030; 95% CI: 3,118, 11,676). School closure effects were driven by high school and middle school closures. Under assumptions of moderate community transmission, we estimate that fall 2020 school reopenings will increase symptomatic illness among high school teachers (an additional 40.7% expected to experience symptomatic infection, 95% CI: 1.9, 61.1), middle school teachers (37.2%, 95% CI: 4.6, 58.1), and elementary school teachers (4.1%, 95% CI: -1.7, 12.0). Results are highly dependent on uncertain parameters, notably the relative susceptibility and infectiousness of children, and extent of community transmission amid re-opening. The school-based interventions needed to reduce the risk to fewer than an additional 1% of teachers infected varies by grade level. A hybrid-learning approach with halved class sizes of 10 students may be needed in high schools, while maintaining small cohorts of 20 students may be needed for elementary schools. Interpretation Multiple in-school intervention strategies and community transmission reductions, beyond the extent achieved to date, will be necessary to avoid undue excess risk associated with school reopening. Policymakers must urgently enact policies that curb community transmission and implement within-school control measures to simultaneously address the tandem health crises posed by COVID-19 and adverse child health and development consequences of long-term school closures.

19.
Proc Biol Sci ; 287(1932): 20201065, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32752986

RESUMO

Temperature is widely known to influence the spatio-temporal dynamics of vector-borne disease transmission, particularly as temperatures vary across critical thermal thresholds. When temperature conditions exhibit such 'transcritical variation', abrupt spatial or temporal discontinuities may result, generating sharp geographical or seasonal boundaries in transmission. Here, we develop a spatio-temporal machine learning algorithm to examine the implications of transcritical variation for West Nile virus (WNV) transmission in the Los Angeles metropolitan area (LA). Analysing a large vector and WNV surveillance dataset spanning 2006-2016, we found that mean temperatures in the previous month strongly predicted the probability of WNV presence in pools of Culex quinquefasciatus mosquitoes, forming distinctive inhibitory (10.0-21.0°C) and favourable (22.7-30.2°C) mean temperature ranges that bound a narrow 1.7°C transitional zone (21-22.7°C). Temperatures during the most intense months of WNV transmission (August/September) were more strongly associated with infection probability in Cx. quinquefasciatus pools in coastal LA, where temperature variation more frequently traversed the narrow transitional temperature range compared to warmer inland locations. This contributed to a pronounced expansion in the geographical distribution of human cases near the coast during warmer-than-average periods. Our findings suggest that transcritical variation may influence the sensitivity of transmission to climate warming, and that especially vulnerable locations may occur where present climatic fluctuations traverse critical temperature thresholds.


Assuntos
Temperatura , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental , Animais , California , Culex , Culicidae , Geografia , Humanos , Los Angeles/epidemiologia , Mosquitos Vetores , Febre do Nilo Ocidental/epidemiologia
20.
Clin Infect Dis ; 71(12): 3088-3095, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31879754

RESUMO

BACKGROUND: Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD), associated with severe manifestations of the disease. Pediatric immunization with inactivated EV71 vaccine was initiated in 2016 in the Asia-Pacific region, including China. We analyzed a time series of HFMD cases attributable to EV71, coxsackievirus A16 (CA16), and other enteroviruses in Chengdu, a major transmission center in China, to assess early impacts of immunization. METHODS: Reported HFMD cases were obtained from China's notifiable disease surveillance system. We compared observed postvaccination incidence rates during 2017-2018 with counterfactual predictions made from a negative binomial regression and a random forest model fitted to prevaccine years (2011-2015). We fit a change point model to the full time series to evaluate whether the trend of EV71 HFMD changed following vaccination. RESULTS: Between 2011 and 2018, 279 352 HFMD cases were reported in the study region. The average incidence rate of EV71 HFMD in 2017-2018 was 60% (95% prediction interval [PI], 41%-72%) lower than predicted in the absence of immunization, corresponding to an estimated 6911 (95% PI, 3246-11 542) EV71 cases averted over 2 years. There were 52% (95% PI, 42%-60%) fewer severe HFMD cases than predicted. However, the incidence rate of non-CA16 and non-EV71 HFMD was elevated in 2018. We identified a significant decline in the trend of EV71 HFMD 4 months into the postvaccine period. CONCLUSIONS: We provide the first real-world evidence that programmatic vaccination against EV71 is effective against childhood HFMD and present an approach to detect early vaccine impact or intended consequences from surveillance data.


Assuntos
Enterovirus Humano A , Enterovirus , Doença de Mão, Pé e Boca , Ásia , Criança , China/epidemiologia , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/prevenção & controle , Humanos , Lactente , Vacinas de Produtos Inativados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...