Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892290

RESUMO

Nitric oxide (NO) and reactive nitrogen species (RNS) exert profound biological impacts dictated by their chemistry. Understanding their spatial distribution is essential for deciphering their roles in diverse biological processes. This review establishes a framework for the chemical biology of NO and RNS, exploring their dynamic reactions within the context of cancer. Concentration-dependent signaling reveals distinctive processes in cancer, with three levels of NO influencing oncogenic properties. In this context, NO plays a crucial role in cancer cell proliferation, metastasis, chemotherapy resistance, and immune suppression. Increased NOS2 expression correlates with poor survival across different tumors, including breast cancer. Additionally, NOS2 can crosstalk with the proinflammatory enzyme cyclooxygenase-2 (COX-2) to promote cancer progression. NOS2 and COX-2 co-expression establishes a positive feed-forward loop, driving immunosuppression and metastasis in estrogen receptor-negative (ER-) breast cancer. Spatial evaluation of NOS2 and COX-2 reveals orthogonal expression, suggesting the unique roles of these niches in the tumor microenvironment (TME). NOS2 and COX2 niche formation requires IFN-γ and cytokine-releasing cells. These niches contribute to poor clinical outcomes, emphasizing their role in cancer progression. Strategies to target these markers include direct inhibition, involving pan-inhibitors and selective inhibitors, as well as indirect approaches targeting their induction or downstream effectors. Compounds from cruciferous vegetables are potential candidates for NOS2 and COX-2 inhibition offering therapeutic applications. Thus, understanding the chemical biology of NO and RNS, their spatial distribution, and their implications in cancer progression provides valuable insights for developing targeted therapies and preventive strategies.


Assuntos
Neoplasias da Mama , Ciclo-Oxigenase 2 , Progressão da Doença , Óxido Nítrico Sintase Tipo II , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ciclo-Oxigenase 2/metabolismo , Feminino , Óxido Nítrico Sintase Tipo II/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Óxido Nítrico/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo
2.
Crit Rev Oncog ; 28(1): 27-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824385

RESUMO

Nitric oxide (NO) and the enzyme that synthesizes it, nitric oxide synthase 2 (NOS2), have emerged as key players in inflammation and cancer. Expression of NOS2 in tumors has been correlated both with positive outcomes and with poor prognoses. The chemistry of NO is the major determinate to the biological outcome and the concentration of NO, which can range over five orders of magnitude, is critical in determining which pathways are activated. It is the activation of specific oncogenic and immunological mechanisms that shape the outcome. The kinetics of specific reactions determine the mechanisms of action. In this review, the relevant reactions of NO and related species are discussed with respect to these oncogenic and immunological signals.


Assuntos
Neoplasias , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Humanos , Neoplasias/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais
3.
Cell Death Dis ; 14(5): 319, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169743

RESUMO

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER breast cancer has been established. However, the mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single-cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγ presents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8+ T cells were spatially analyzed in aggressive ER-, TNBC, and HER2 + breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8+ T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8+ T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis, suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ + IL1ß/TNFα increased the elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight into distinct neighborhoods where stroma-restricted CD8+ T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.


Assuntos
Interferon gama , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Feminino , Humanos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Biomolecules ; 13(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36830680

RESUMO

The small endogenous signaling molecule nitric oxide (NO) has been linked with chronic inflammation and cancer. The effects of NO are both concentration and temporally dependent; under some conditions, NO protects against damage caused by reactive oxygen species and activates P53 signaling. During chronic inflammation, NO causes DNA damage and inhibits repair proteins. To extend our understanding of the roles of NO during carcinogenesis, we investigated the possible effects of chronic NO exposure on MCF10A breast epithelial cells, as defined by changes in cellular morphology, chromosome/genomic stability, RNA, and protein expression, and altered cell phenotypes. Human MCF10A cells were maintained in varying doses of the NO donor DETANO for three weeks. Distinct patterns of genomic modifications in TP53 and KRAS target genes were detected in NO-treated cells when compared to background mutations. In addition, quantitative real-time PCR demonstrated an increase in the expression of cancer stem cell (CSC) marker CD44 after prolonged exposure to 300 µM DETANO. While similar changes in cell morphology were found in cells exposed to 300-500 µM DETANO, cells cultured in 100 µM DETANO exhibited enhanced motility. In addition, 100 µM NO-treated cells proliferated in serum-free media and selected clonal populations and pooled cells formed colonies in soft agar that were clustered and disorganized. These findings show that chronic exposure to NO generates altered breast epithelial cell phenotypes with malignant characteristics.


Assuntos
Neoplasias da Mama , Óxido Nítrico , Humanos , Feminino , Óxido Nítrico/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células Epiteliais/metabolismo , Mutação , Inflamação/metabolismo , Neoplasias da Mama/metabolismo
5.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187660

RESUMO

Multiple immunosuppressive mechanisms exist in the tumor microenvironment that drive poor outcomes and decrease treatment efficacy. The co-expression of NOS2 and COX2 is a strong predictor of poor prognosis in ER- breast cancer and other malignancies. Together, they generate pro-oncogenic signals that drive metastasis, drug resistance, cancer stemness, and immune suppression. Using an ER- breast cancer patient cohort, we found that the spatial expression patterns of NOS2 and COX2 with CD3+CD8+PD1- T effector (Teff) cells formed a tumor immune landscape that correlated with poor outcome. NOS2 was primarily associated with the tumor-immune interface, whereas COX2 was associated with immune desert regions of the tumor lacking Teff cells. A higher ratio of NOS2 or COX2 to Teff was highly correlated with poor outcomes. Spatial analysis revealed that regional clustering of NOS2 and COX2 was associated with stromal-restricted Teff, while only COX2 was predominant in immune deserts. Examination of other immunosuppressive elements, such as PDL1/PD1, Treg, B7H4, and IDO1, revealed that PDL1/PD1, Treg, and IDO1 were primarily associated with restricted Teff, whereas B7H4 and COX2 were found in tumor immune deserts. Regardless of the survival outcome, other leukocytes, such as CD4 T cells and macrophages, were primarily in stromal lymphoid aggregates. Finally, in a 4T1 model, COX2 inhibition led to a massive cell infiltration, thus validating the hypothesis that COX2 is an essential component of the Teff exclusion process and, thus, tumor evasion. Our study indicates that NOS2/COX2 expression plays a central role in tumor immunosuppression. Our findings indicate that new strategies combining clinically available NOS2/COX2 inhibitors with various forms of immune therapy may open a new avenue for the treatment of aggressive ER-breast cancers.

6.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209132

RESUMO

The metabolic requirements and functions of cancer and normal tissues are vastly different. Due to the rapid growth of cancer cells in the tumor microenvironment, distorted vasculature is commonly observed, which creates harsh environments that require rigorous and constantly evolving cellular adaption. A common hallmark of aggressive and therapeutically resistant tumors is hypoxia and hypoxia-induced stress markers. However, recent studies have identified alterations in a wide spectrum of metabolic pathways that dictate tumor behavior and response to therapy. Accordingly, it is becoming clear that metabolic processes are not uniform throughout the tumor microenvironment. Metabolic processes differ and are cell type specific where various factors promote metabolic heterogeneity within the tumor microenvironment. Furthermore, within the tumor, these metabolically distinct cell types can organize to form cellular neighborhoods that serve to establish a pro-tumor milieu in which distant and spatially distinct cellular neighborhoods can communicate via signaling metabolites from stroma, immune and tumor cells. In this review, we will discuss how biochemical interactions of various metabolic pathways influence cancer and immune microenvironments, as well as associated mechanisms that lead to good or poor clinical outcomes.


Assuntos
Neoplasias/imunologia , Óxido Nítrico/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Neoplasias/patologia
7.
J Vis Exp ; (157)2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32250353

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited therapeutic options. When compared to patients with less aggressive breast tumors, the 5-year survival rate of TNBC patients is 77% due to their characteristic drug-resistant phenotype and metastatic burden. Toward this end, murine models have been established aimed at identifying novel therapeutic strategies limiting TNBC tumor growth and metastatic spread. This work describes a practical guide for the TNBC orthotopic model where MDA-MB-231 breast cancer cells suspended in a basement membrane matrix are implanted in the fourth mammary fat pad, which closely mimics the cancer cell behavior in humans. Measurement of tumors by caliper, lung metastasis assessment via in vivo and ex vivo imaging, and molecular detection are discussed. This model provides an excellent platform to study therapeutic efficacy and is especially suitable for the study of the interaction between the primary tumor and distal metastatic sites.


Assuntos
Neoplasias de Mama Triplo Negativas/patologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Pulmonares/secundário , Camundongos , Fenótipo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Redox Biol ; 28: 101354, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683257

RESUMO

The role of nitric oxide (NO) in cancer progression has largely been studied in the context of tumor NOS2 expression. However, pro- versus anti-tumor signaling is also affected by tumor cell-macrophage interactions. While these cell-cell interactions are partly regulated by NO, the functional effects of NO flux on proinflammatory (M1) macrophages are unknown. Using a triple negative murine breast cancer model, we explored the potential role of macrophage Nos2 on 4T1 tumor progression. The effects of NO on macrophage phenotype were examined in bone marrow derived macrophages from wild type and Nos2-/- mice following in vitro stimulation with cytokine/LPS combinations to produce low, medium, and high NO flux. Remarkably, Nos2 induction was spatially distinct, where Nos2high cells expressed low cyclooxygenase-2 (Cox2) and vice versa. Importantly, in vitro M1 polarization with IFNγ+LPS induced high NO flux that was restricted to cells harboring depolarized mitochondria. This flux altered the magnitude and spatial extent of hypoxic gradients. Metabolic and single cell analyses demonstrated that single cell Nos2 induction limited the generation of hypoxic gradients in vitro, and Nos2-dependent and independent features may collaborate to regulate M1 functionality. It was found that Cox2 expression was important for Nos2high cells to maintain NO tolerance. Furthermore, Nos2 and Cox2 expression in 4T1 mouse tumors was spatially orthogonal forming distinct cellular neighborhoods. In summary, the location and type of Nos2high cells, NO flux, and the inflammatory status of other cells, such as Cox2high cells in the tumor niche contribute to Nos2 inflammatory mechanisms that promote disease progression of 4T1 tumors.


Assuntos
Citocinas/metabolismo , Lipopolissacarídeos/efeitos adversos , Óxido Nítrico Sintase Tipo II/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Transplante de Neoplasias , Óxido Nítrico/metabolismo , Análise de Célula Única , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
9.
Redox Biol ; 22: 101158, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30852389

RESUMO

Pancreatic cancer is a highly metastatic tumor with an extremely low 5-year survival rate. Lack of efficient diagnostics and dearth of effective therapeutics that can target the cancer as well as the microenvironment niche are the reasons for limited success in treatment and management of this disease. Cell invasion through extracellular matrix (ECM) involves the complex regulation of adhesion to and detachment from ECM and its understanding is critical to metastatic potential of pancreatic cancer. To understand the characteristics of these cancer cells and their ability to metastasize, we compared human pancreatic cancer cell line, PANC-1 and its invading phenotype (INV) collected from transwell inserts. The invasive cell type, INV, exhibited higher resistance to Carbon-ion radiation compared to whole cultured (normally dish-cultured) PANC-1 (WCC), and had more efficient in vitro spheroid formation capability. Invasiveness of INV was hampered by nitric oxide synthase (NOS) inhibitors, suggesting that nitric oxide (NO) plays a cardinal role in PANC-1 invasion. In addition, in vitro studies indicated that a MEK-ERK-dependent, JAK independent mechanism through which NOS/NO modulate PANC-1 invasiveness. Suspended INV showed enhanced NO production as well as induction of several pro-metastatic, and stemness-related genes. NOS inhibitor, l-NAME, reduced the expression of these pro-metastatic or stemness-related genes, and dampened spheroid formation ability, suggesting that NO can potentially influence pancreatic cancer aggressiveness. Furthermore, xenograft studies with INV and WCC in NSG mouse model revealed a greater ability of INV compared to WCC, to metastasize to the liver and l-NAME diminished the metastatic lesions in mice injected with INV. Overall, data suggest that NO is a key player associated with resistance to radiation and metastasis of pancreatic cancer; and inhibition of NOS demonstrates therapeutic potential as observed in the animal model by specifically targeting the metastatic cells that harbor stem-like features and are potentially responsible for relapse.


Assuntos
Óxido Nítrico/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenótipo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Imunofluorescência , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Óxido Nítrico Sintase/metabolismo
10.
Antioxid Redox Signal ; 30(8): 1124-1143, 2019 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-29634348

RESUMO

SIGNIFICANCE: Cancer is a complex disease, which not only involves the tumor but its microenvironment comprising different immune cells as well. Nitric oxide (NO) plays specific roles within tumor cells and the microenvironment and determines the rate of cancer progression, therapy efficacy, and patient prognosis. Recent Advances: Key understanding of the processes leading to dysregulated NO flux within the tumor microenvironment over the past decade has provided better understanding of the dichotomous role of NO in cancer and its importance in shaping the immune landscape. It is becoming increasingly evident that nitric oxide synthase 2 (NOS2)-mediated NO/reactive nitrogen oxide species (RNS) are heavily involved in cancer progression and metastasis in different types of tumor. More recent studies have found that NO from NOS2+ macrophages is required for cancer immunotherapy to be effective. CRITICAL ISSUES: NO/RNS, unlike other molecules, are unique in their ability to target a plethora of oncogenic pathways during cancer progression. In this review, we subcategorize the different levels of NO produced by cells and shed light on the context-dependent temporal effects on cancer signaling and metabolic shift in the tumor microenvironment. FUTURE DIRECTIONS: Understanding the source of NO and its spaciotemporal profile within the tumor microenvironment could help improve efficacy of cancer immunotherapies by improving tumor infiltration of immune cells for better tumor clearance.


Assuntos
Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Óxido Nítrico Sintase Tipo II/metabolismo , Prognóstico , Transdução de Sinais , Microambiente Tumoral
11.
Br J Pharmacol ; 176(2): 155-176, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30152521

RESUMO

Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2 , respectively, and can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic tumour micro-environment. Recent studies have also established a key role of NOS2-COX2 in causing metabolic shift. This review provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment composed of tumour and immune cells that in turn favours tumour progression and metastasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Humanos , Óxido Nítrico/metabolismo , Microambiente Tumoral
12.
Proc Natl Acad Sci U S A ; 114(49): 13030-13035, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29087320

RESUMO

Proinflammatory signaling pathways are commonly up-regulated in breast cancer. In estrogen receptor-negative (ER-) and triple-negative breast cancer (TNBC), nitric oxide synthase-2 (NOS2) and cyclooxygenase-2 (COX2) have been described as independent predictors of disease outcome. We further explore these findings by investigating the impact of their coexpression on breast cancer survival. Elevated coexpression of NOS2/COX2 proteins is a strong predictor of poor survival among ER- patients (hazard ratio: 21). Furthermore, we found that the key products of NOS2 and COX2, NO and prostaglandin E2 (PGE2), respectively, promote feed-forward NOS2/COX2 crosstalk in both MDA-MB-468 (basal-like) and MDA-MB-231 (mesenchymal-like) TNBC cell lines in which NO induced COX2 and PGE2 induced NOS2 proteins. COX2 induction by NO involved TRAF2 activation that occurred in a TNFα-dependent manner in MDA-MB-468 cells. In contrast, NO-mediated TRAF2 activation in the more aggressive MDA-MB-231 cells was TNFα independent but involved the endoplasmic reticulum stress response. Inhibition of NOS2 and COX2 using amino-guanidine and aspirin/indomethacin yielded an additive reduction in the growth of MDA-MB-231 tumor xenografts. These findings support a role of NOS2/COX2 crosstalk during disease progression of aggressive cancer phenotypes and offer insight into therapeutic applications for better survival of patients with ER- and TNBC disease.


Assuntos
Neoplasias da Mama/genética , Ciclo-Oxigenase 2/genética , Regulação Neoplásica da Expressão Gênica , Óxido Nítrico Sintase Tipo II/genética , Receptores de Estrogênio/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Aspirina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retroalimentação Fisiológica , Feminino , Guanidinas/farmacologia , Humanos , Indometacina/farmacologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , Receptores de Estrogênio/deficiência , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Cell Biochem ; 118(2): 237-251, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27302072

RESUMO

Mammalian NUMB is alternatively spliced generating four isoforms NUMB1-NUMB4 that can function as tumor suppressors. NUMB1-NUMB4 proteins, which normally determine how different cell types develop, are reduced in 21% of primary breast tumors. Our previous work has, however, indicated that two novel NUMB isoforms, NUMB5 and NUMB6 have the pro-oncogenic functions. Herein, we address a novel function of human NUMB isoform 6 (NUMB6) in promoting cancer cell migration and invasion. We found that NUMB6 induced expression of embryonic transcription factor Slug, which in turn actively repressed E-cadherin, prompting cells to undergo epithelial-mesenchymal transition (EMT). Low-metastatic breast cancer cells DB-7 stably expressing NUMB6, lost their epithelial phenotype, exhibited migratory and pro-invasive behavior, and ultimately elevated expression of mesenchymal markers. Among these markers, increased vimentin, ß-catenin, and fibronectin expression elicited metalloproteinase 9 (MMP9) production. Our results revealed that NUMB6-DB-7 cells have significantly increased level of Akt1 and Akt2 phosphorylation. Therefore, antagonizing Akt signaling using a chemical inhibitor LY294002, we found that NUMB6-induced Slug expression was reduced, and ultimately accompanied with decreased cell migration and invasion. In summary, this study identified a novel molecular determinant of breast cancer progression, uncovering a potential oncogenic role for the NUMB6 protein in cancer cell migration and invasion, coupled to the maintenance of mesenchymal-like cells. J. Cell. Biochem. 118: 237-251, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Membrana/genética , Invasividade Neoplásica , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
14.
Antioxid Redox Signal ; 26(18): 1044-1058, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27464521

RESUMO

SIGNIFICANCE: Breast cancer is the second leading cause of cancer-related deaths among women in the United States. Development and progression of malignancy are associated with diverse cell signaling pathways that control cell proliferation, survival, motility, invasion, and metastasis. Recent Advances: An increasing number of clinical studies have implicated a strong relationship between elevated tumor nitric oxide synthase-2 (NOS2) expression and poor patient survival. CRITICAL ISSUES: Herein, we review what we believe to be key mechanisms in the role(s) of NOS2-derived nitric oxide (NO) as a driver of breast cancer disease progression. High NO increases cyclooxygenase-2 activity, hypoxia inducible factor-1 alpha protein stabilization, and activation of important cell signaling pathways, including phosphoinositide 3-kinase/protein kinase B, mitogen-activated protein kinase, epidermal growth factor receptor, and Ras, through post-translational protein modifications. Moreover, dysregulated NO flux within the tumor microenvironment has other important roles, including the promotion of angiogenesis and modulation of matrix metalloproteinase/tissue inhibitor matrix metalloproteinase associated with tumor progression. FUTURE DIRECTIONS: The elucidation of these and other NO-driven pathways implicates NOS2 as a key driver of breast cancer disease progression and provides a new perspective in the identification of novel targets that may be therapeutically beneficial in the treatment of estrogen receptor-negative disease. Antioxid. Redox Signal. 26, 1044-1058.


Assuntos
Neoplasias da Mama/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Animais , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Estabilidade Proteica , Transdução de Sinais , Microambiente Tumoral
15.
Antioxid Redox Signal ; 26(18): 1059-1077, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27494631

RESUMO

SIGNIFICANCE: Gastrointestinal (GI) cancer taken together constitutes one of the most common cancers worldwide with a broad range of etiological mechanisms. In this review, we have examined the impact of nitric oxide (NO) on the etiology of colon, colorectal, gastric, esophageal, and liver cancers. Recent Advances: Despite differences in etiology, initiation, and progression, chronic inflammation has been shown to be a common element within these cancers showing interactions of numerous pathways. NO generated at the inflammatory site contributes to the initiation and progression of disease. The amount of NO generated, time, and site vary and are an important determinant of the biological effects initiated. Among the nitric oxide synthase enzymes, the inducible isoform has the most diverse range, participating in numerous carcinogenic processes. There is emerging evidence showing that inducible nitric oxide synthase (NOS2) plays a central role in the process of tumor initiation and/or development. CRITICAL ISSUES: Redox inflammation through NOS2 and cyclooxygenase-2 participates in driving the mechanisms of initiation and progression in GI cancers. FUTURE DIRECTIONS: Understanding the underlying mechanism involved in NOS2 activation can provide new insights into important prevention and treatment strategies. Antioxid. Redox Signal. 26, 1059-1077.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Neoplasias Gastrointestinais/enzimologia , Inflamação/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Carcinogênese/metabolismo , Progressão da Doença , Neoplasias Gastrointestinais/etiologia , Humanos , Inflamação/etiologia , Óxido Nítrico/imunologia , Oxirredução
16.
Free Radic Biol Med ; 87: 204-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26117324

RESUMO

Nitric oxide (NO) has a highly diverse range of biological functions from physiological signaling and maintenance of homeostasis to serving as an effector molecule in the immune system. However, deleterious as well as beneficial roles of NO have been reported. Many of the dichotomous effects of NO and derivative reactive nitrogen species (RNS) can be explained by invoking precise interactions with different targets as a result of concentration and temporal constraints. Endogenous concentrations of NO span five orders of magnitude, with levels near the high picomolar range typically occurring in short bursts as compared to sustained production of low micromolar levels of NO during immune response. This article provides an overview of the redox landscape as it relates to increasing NO concentrations, which incrementally govern physiological signaling, nitrosative signaling and nitrosative stress-related signaling. Physiological signaling by NO primarily occurs upon interaction with the heme protein soluble guanylyl cyclase. As NO concentrations rise, interactions with nonheme iron complexes as well as indirect modification of thiols can stimulate additional signaling processes. At the highest levels of NO, production of a broader range of RNS, which subsequently interact with more diverse targets, can lead to chemical stress. However, even under such conditions, there is evidence that stress-related signaling mechanisms are triggered to protect cells or even resolve the stress. This review therefore also addresses the fundamental reactions and kinetics that initiate signaling through NO-dependent pathways, including processes that lead to interconversion of RNS and interactions with molecular targets.


Assuntos
Neoplasias/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Espécies Reativas de Nitrogênio/metabolismo , Apoptose/genética , Radicais Livres/metabolismo , Humanos , Neoplasias/patologia , Óxido Nítrico Sintase Tipo II/genética , Estresse Oxidativo/genética , Espécies Reativas de Nitrogênio/genética , Transdução de Sinais/genética
17.
Cancer Res ; 75(14): 2788-99, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25990221

RESUMO

Nitric oxide synthases (NOS) are important mediators of progrowth signaling in tumor cells, as they regulate angiogenesis, immune response, and immune-mediated wound healing. Ionizing radiation (IR) is also an immune modulator and inducer of wound response. We hypothesized that radiation therapeutic efficacy could be improved by targeting NOS following tumor irradiation. Herein, we show enhanced radiation-induced (10 Gy) tumor growth delay in a syngeneic model (C3H) but not immunosuppressed (Nu/Nu) squamous cell carcinoma tumor-bearing mice treated post-IR with the constitutive NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME). These results suggest a requirement of T cells for improved radiation tumor response. In support of this observation, tumor irradiation induced a rapid increase in the immunosuppressive Th2 cytokine IL10, which was abated by post-IR administration of L-NAME. In vivo suppression of IL10 using an antisense IL10 morpholino also extended the tumor growth delay induced by radiation in a manner similar to L-NAME. Further examination of this mechanism in cultured Jurkat T cells revealed L-NAME suppression of IR-induced IL10 expression, which reaccumulated in the presence of exogenous NO donor. In addition to L-NAME, the guanylyl cyclase inhibitors ODQ and thrombospondin-1 also abated IR-induced IL10 expression in Jurkat T cells and ANA-1 macrophages, which further suggests that the immunosuppressive effects involve eNOS. Moreover, cytotoxic Th1 cytokines, including IL2, IL12p40, and IFNγ, as well as activated CD8(+) T cells were elevated in tumors receiving post-IR L-NAME. Together, these results suggest that post-IR NOS inhibition improves radiation tumor response via Th1 immune polarization within the tumor microenvironment.


Assuntos
Quimiotaxia de Leucócito/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Neoplasias/patologia , Óxido Nítrico Sintase/antagonistas & inibidores , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia
18.
Nitric Oxide ; 43: 17-28, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25153034

RESUMO

Nitric oxide (NO) synthase 2 (NOS2), a major inflammatory protein, modulates disease progression via NO in a number of pathologies, including cancer. The role of NOS2-derived NO is not only flux-dependent, which is higher in mouse vs human cells, but also varies based on spatial and temporal distribution both within tumor cells and in the tumor microenvironment. NO donors have been utilized to mimic NO flux conditions and to investigate the effects of varied NO concentrations. As a wide range of effects mediated by NO and other nitrogen oxides such as nitroxyl (HNO) have been elucidated, multiple NO- and HNO-releasing compounds have been developed as potential therapeutics, including as tumor modulators. One of the challenges is to determine differences in biomarker expression from extracellular vs intracellular generation of NO or HNO. Taking advantage of new NO and HNO releasing agents, we have characterized the gene expression profile of estrogen receptor-negative human breast cancer (MDA-MB-231) cells following exposure to aspirin, the NO donor DEA/NO, the HNO donor IPA/NO andtheir intracellularly-activated prodrug conjugates DEA/NO-aspirin and IPA/NO-aspirin. Comparison of the gene expression profiles demonstrated that several genes were uniquely expressed with respect to NO or HNO, such as miR-21, HSP70, cystathionine γ-lyase and IL24. These findings provide insight into targets and pathways that could be therapeutically exploited by the redox related species NO and HNO.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/farmacologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Óxido Nítrico Sintase/metabolismo , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 111(17): 6323-8, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733928

RESUMO

Inflammation is widely recognized as an inducer of cancer progression. The inflammation-associated enzyme, inducible nitric oxide synthase (NOS2), has emerged as a candidate oncogene in estrogen receptor (ER)-negative breast cancer, and its increased expression is associated with disease aggressiveness and poor survival. Although these observations implicate NOS2 as an attractive therapeutic target, the mechanisms of both NOS2 induction in tumors and nitric oxide (NO)-driven cancer progression are not fully understood. To enhance our mechanistic understanding of NOS2 induction in tumors and its role in tumor biology, we used stimulants of NOS2 expression in ER(-) and ER(+) breast cancer cells and examined downstream NO-dependent effects. Herein, we show that up-regulation of NOS2 occurs in response to hypoxia, serum withdrawal, IFN-γ, and exogenous NO, consistent with a feed-forward regulation of NO production by the tumor microenvironment in breast cancer biology. Moreover, we found that key indicators of an aggressive cancer phenotype including increased S100 calcium binding protein A8, IL-6, IL-8, and tissue inhibitor matrix metalloproteinase-1 are up-regulated by these NOS2 stimulants, whereas inhibition of NOS2 in MDA-MB-231 breast cancer cells suppressed these markers. Moreover, NO altered cellular migration and chemoresistance of MDA-MB-231 cells to Taxol. Most notably, MDA-MB-231 tumor xenographs and cell metastases from the fat pad to the brain were significantly suppressed by NOS2 inhibition in nude mice. In summary, these results link elevated NOS2 to signals from the tumor microenvironment that arise with cancer progression and show that NO production regulates chemoresistance and metastasis of breast cancer cells.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Progressão da Doença , Retroalimentação Fisiológica , Óxido Nítrico Sintase Tipo II/metabolismo , Microambiente Tumoral , Animais , Biomarcadores Tumorais/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura Livres de Soro , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Guanidinas , Humanos , Interferon gama/farmacologia , Camundongos , Modelos Biológicos , Metástase Neoplásica , Óxido Nítrico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
20.
J Med Chem ; 56(20): 7804-20, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24102516

RESUMO

Structural modifications of nonsteroidal anti-inflammatory drugs (NSAIDs) have successfully reduced the side effect of gastrointestinal ulceration without affecting anti-inflammatory activity, but they may increase the risk of myocardial infarction with chronic use. The fact that nitroxyl (HNO) reduces platelet aggregation, preconditions against myocardial infarction, and enhances contractility led us to synthesize a diazeniumdiolate-based HNO-releasing aspirin and to compare it to an NO-releasing analogue. Here, the decomposition mechanisms are described for these compounds. In addition to protection against stomach ulceration, these prodrugs exhibited significantly enhanced cytotoxcity compared to either aspirin or the parent diazeniumdiolate toward nonsmall cell lung carcinoma cells (A549), but they were not appreciably toxic toward endothelial cells (HUVECs). The HNO-NSAID prodrug inhibited cylcooxgenase-2 and glyceraldehyde 3-phosphate dehydrogenase activity and triggered significant sarcomere shortening on murine ventricular myocytes compared to control. Together, these anti-inflammatory, antineoplasic, and contractile properties suggest the potential of HNO-NSAIDs in the treatment of inflammation, cancer, or heart failure.


Assuntos
Aspirina/síntese química , Aspirina/farmacologia , Compostos Azo/química , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/química , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Químicos , Estrutura Molecular , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...