Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37754624

RESUMO

The outbreak of the COVID-19 pandemic has resulted in reduced opportunities for children to engage in fundamental motor skills [FMS]. This prolonged inactivity and restriction of play can have serious consequences for children's physical and mental health. The purpose of this study was to explore teaching strategies during the pandemic, whether there were differences in children's motor development, and the differences in the implementation of physical movement courses before and during the pandemic from the perspective of preschool teachers. This study was a retrospective study using an internet survey, and participants comprised 2337 preschool teachers. The statistical methodology of this study included descriptive statistics, the dependent t-test, and the independent t-test. The results showed that regardless of the time, frequency, activity intensity, and frequency of outdoor courses, the results from before the pandemic was better than those taken during the pandemic. Only the "frequency of implementing physical movement courses indoors every week" had not been affected by the pandemic. This study also obtained the performance of "children's fitness", "overall performance of physical movement ability", "stability movement skills", "locomotor movement skills", and "manipulative movement skills". All were better before the pandemic than during the pandemic. During the COVID-19 pandemic, mixed-age classes performed better than same-age classes in terms of frequency, time, intensity, outdoor course implementation, and physical fitness. Public schools performed better than private schools in terms of frequency, time, intensity, outdoor course implementation, and fundamental motor skills performance. Private schools implemented physical movement courses indoors every week, which was more than public schools. Excepting the frequency of implementing physical movement courses indoors every week, fewer than schools with five classes performed better than those who had more than schools with six classes. Finally, rural schools were better than urban schools in the implementation of outdoor courses and fundamental motor skills performance. Therefore, we suggest that in response to the pandemic, teachers should further improve their professionalism and use diversified teaching methods, and guide students to be willing to learn and improve their skill performance.

2.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955957

RESUMO

Oral squamous cell carcinoma (OSCC) affects tens of thousands of people worldwide. Despite advances in cancer treatment, the 5-year survival rate of patients with late-stage OSCC is low at 50-60%. Therefore, the development of anti-OSCC therapy is necessary. We evaluated the effects of marine-derived triterpene stellettin B in human OC2 and SCC4 cells. Stellettin B dose-dependently decreased the viability of both cell lines, with a significant reduction in OC2 cells at ≥0.1 µM at 24 and 48 h, and in SCC4 cells at ≥1 µM at 24 and 48 h. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells were significantly observed at 20 µM of stellettin B at 48 h, with the overexpression of cleaved caspase3 and cleaved poly(ADP-ribose) polymerase (PARP). Moreover, mitochondrial respiratory functions were ablated by stellettin B. Autophagy-related LC3-II/LC3-I ratio and Beclin-1 proteins were increased, whereas p62 was decreased. At 20 µM at 48 h, the expression levels of the endoplasmic reticulum (ER) stress biomarkers calnexin and BiP/GRP78 were significantly increased and mitogen-activated protein kinase (MAPK) signaling pathways were activated. Further investigation using the autophagy inhibitor 3-methyladenine (3-MA) demonstrated that it alleviated stellettin B-induced cell death and autophagy. Overall, our findings show that stellettin B induces the ER stress, mitochondrial stress, apoptosis, and autophagy, causing cell death of OSCC cells.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Triterpenos , Apoptose , Autofagia , Carcinoma de Células Escamosas/tratamento farmacológico , Estresse do Retículo Endoplasmático , Humanos , Neoplasias Bucais/tratamento farmacológico , Transdução de Sinais , Triterpenos/farmacologia
3.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209254

RESUMO

Glioblastoma multiforme (GBM) is a malignant primary brain tumor. The 5-year relative survival rate of patients with GBM remains <30% on average despite aggressive treatments, and secondary therapy fails in 90% of patients. In chemotherapeutic failure, detoxification proteins are crucial to the activity of chemotherapy drugs. Usually, glutathione S-transferase (GST) superfamily members act as detoxification enzymes by activating xenobiotic metabolites through conjugation with glutathione in healthy cells. However, some overexpressed GSTs not only increase GST activity but also trigger chemotherapy resistance and tumorigenesis-related signaling transductions. Whether GSTM3 is involved in GBM chemoresistance remains unclear. In the current study, we found that T98G, a GBM cell line with pre-existing temozolomide (TMZ) resistance, has high glycolysis and GSTM3 expression. GSTM3 knockdown in T98G decreased glycolysis ability through lactate dehydrogenase A activity reduction. Moreover, it increased TMZ toxicity and decreased invasion ability. Furthermore, we provide next-generation sequencing-based identification of significantly changed messenger RNAs of T98G cells with GSTM3 knockdown for further research. GSTM3 was downregulated in intrinsic TMZ-resistant T98G with a change in the expression levels of some essential glycolysis-related genes. Thus, GSTM3 was associated with glycolysis in chemotherapeutic resistance in T98G cells. Our findings provide new insight into the GSTM3 mechanism in recurring GBM.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioblastoma/enzimologia , Glutationa Transferase/metabolismo , Glicólise , Proteínas de Neoplasias/metabolismo , Temozolomida , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/patologia , Glutationa Transferase/genética , Humanos , Proteínas de Neoplasias/genética
4.
Biochem Pharmacol ; 178: 114064, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32492449

RESUMO

Osteosarcoma (OS) is the most common solid tumor of the bone that most often affects adolescents. The introduction of chemotherapy for the treatment of OS has largely improved the survival rates of patients with localized tumors. However, the 5-year survival rate of OS patients with relapsed or metastatic disease is only 10 to 20%. In this study, the antimicrobial peptide tilapia piscidin 3 (TP3), isolated from Nile tilapia (Oreochromis niloticus), was treated to OS MG63 cells. Our findings showed that TP3 concentration as low as 1 µM induced significant inhibition of cell viability and increased DNA fragmentation, as determined by the MTT and TUNEL assays, respectively. The protein expression levels of cleaved caspases 3/9 were increased. An in situ live-cell time-lapse video and cell tomographic microscopy images showed cellular blebbing, shrinkage, nuclear fragmentation, and chromatin condensation, with the formation of beaded apoptopodia. Moreover, there were significant increase in the production of TP3-induced mitochondrial and cellular reactive oxygen species (ROS), as well as down-regulated mitochondrial oxygen consumption and extracellular acidification rates. Additionally, TP3 enhanced mitochondrial fission, whereas fusion was attenuated. Furthermore, after administration of the mitochondria targeted antioxidant mitoTempo, TP3-induced ROS oxidant levels and alterations in cleaved caspases 3/9 expression were rescued. TP3 promoted mitochondria-modulated intrinsic apoptosis through the induction of ROS production, activation of caspases 3/9, and the down-regulation of mitochondrial oxygen consumption and extracellular acidification rates, suggesting that TP3 has potential as an innovative alternative for OS treatment.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Peixes/farmacologia , Mitocôndrias/efeitos dos fármacos , Osteossarcoma , Microambiente Tumoral/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Apoptose/fisiologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/uso terapêutico , Humanos , Mitocôndrias/patologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Tilápia , Microambiente Tumoral/fisiologia
5.
Oxid Med Cell Longev ; 2019: 6342104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205586

RESUMO

Lung cancer is the leading cause of cancer deaths in the world, with a five-year survival rate of less than 30%. Clinically effective chemotherapeutic treatments at the initial stage may eventually face the dilemma of no drug being effective due to drug resistance; therefore, finding new effective drugs for lung cancer treatment is a necessary and important issue. Compounds capable of further increasing the oxidative stress of cancer cells are considered to have anticancer potential because they possessed the ability to induce apoptosis. This study mainly investigated the effects of BA6 (heteronemin), the marine sponge sesterterpene, on lung cancer cell apoptosis, via modulation of mitochondrial reactive oxygen species (mtROS) and oxidative phosphorylation (OXPHOS). BA6 has cellular cytotoxic activities against a variety of cancer cell lines, but it has no effect on nontumor cells. The BA6-treated lung cancer cells show a significant increase in both cellular ROS and mtROS, which in turn caused the loss of mitochondrial membrane potential (MMP). The increase of oxidative stress in lung cancer cells treated with BA6 was accompanied by a decrease in the expression of antioxidant enzymes Cu/Zn SOD, MnSOD, and catalase. In addition, OXPHOS performed in the mitochondria and glycolysis in the cytoplasm were inhibited, which subsequently reduced downstream ATP production. Pretreatment with mitochondria-targeted antioxidant MitoTEMPO reduced BA6-induced apoptosis through the mitochondria-dependent apoptotic pathway, which was accompanied by increased cell viability, decreased mtROS, enhanced MMP, and suppressed expression of cleaved caspase-3 and caspase-9 proteins. In conclusion, the results of this study clarify the mechanism of BA6-induced apoptosis in lung cancer cells via the mitochondrial apoptotic pathway, suggesting that it is a potentially innovative alternative to the treatment of human lung cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Terpenos/farmacologia , Sobrevivência Celular , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Superóxido Dismutase/metabolismo , Células Tumorais Cultivadas
6.
Mar Drugs ; 17(6)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146323

RESUMO

Pharmaceutical agents for halting the progression of Parkinson's disease (PD) are lacking. The current available medications only relieve clinical symptoms and may cause severe side effects. Therefore, there is an urgent need for novel drug candidates for PD. In this study, we demonstrated the neuroprotective activity of stellettin B (SB), a compound isolated from marine sponges. We showed that SB could significantly protect SH-SY5Y cells against 6-OHDA-induced cellular damage by inhibiting cell apoptosis and oxidative stress through PI3K/Akt, MAPK, caspase cascade modulation and Nrf2/HO-1 cascade modulation, respectively. In addition, an in vivo study showed that SB reversed 6-OHDA-induced a locomotor deficit in a zebrafish model of PD. The potential for developing SB as a candidate drug for PD treatment is discussed.


Assuntos
Apoptose/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poríferos/química , Triterpenos/farmacologia , Animais , Organismos Aquáticos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Locomoção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Triterpenos/química , Triterpenos/isolamento & purificação , Peixe-Zebra
7.
Mar Drugs ; 17(3)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818790

RESUMO

Gingival recession (GR) potentially leads to the exposure of tooth root to the oral cavity microenvironment and increases susceptibility to dental caries, dentin hypersensitivity, and other dental diseases. Even though many etiological factors were reported, the specific mechanism of GR is yet to be elucidated. Given the species richness concerning marine biodiversity, it could be a treasure trove for drug discovery. In this study, we demonstrate the effects of a marine compound, (+)-rhodoptilometrin from crinoid, on gingival cell migration, wound healing, and oxidative phosphorylation (OXPHOS). Experimental results showed that (+)-rhodoptilometrin can significantly increase wound healing, migration, and proliferation of human gingival fibroblast cells, and it does not have effects on oral mucosa fibroblast cells. In addition, (+)-rhodoptilometrin increases the gene and protein expression levels of focal adhesion kinase (FAK), fibronectin, and type I collagen, changes the intracellular distribution of FAK and F-actin, and increases OXPHOS and the expression levels of complexes I~V in the mitochondria. Based on our results, we believe that (+)-rhodoptilometrin might increase FAK expression and promote mitochondrial function to affect cell migration and promote gingival regeneration. Therefore, (+)-rhodoptilometrin may be a promising therapeutic agent for GR.


Assuntos
Antraquinonas/farmacologia , Equinodermos/química , Fibroblastos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/citologia , Fibroblastos/fisiologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Gengiva/citologia , Gengiva/efeitos dos fármacos , Gengiva/fisiologia , Retração Gengival/tratamento farmacológico , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mucosa Bucal/citologia , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/fisiologia , Fosforilação Oxidativa/efeitos dos fármacos
8.
Cancers (Basel) ; 11(2)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769863

RESUMO

Angiogenesis and invasion are highly related with tumor metastatic potential and recurrence prediction in the most aggressive brain cancer, glioblastoma multiforme (GBM). For the first time, this study reveals that marine-sponge-derived stellettin B reduces angiogenesis and invasion. We discovered that stellettin B reduces migration of glioblastoma cells by scratch wound healing assay and invasion via chamber transwell assay. Further, stellettin B downregulates Akt/Mammalian Target of Rapamycin (Akt/mTOR) and Signal transducer and activator of transcription 3 (Stat3) signaling pathways, which are essential for invasion and angiogenesis in glioblastoma. This study further demonstrates that stellettin B affects filamentous actin (F-actin) rearrangement by decreasing the cross-linkage of phosphor-Girdin (p-Girdin), which attenuates glioblastoma cell invasion. Moreover, stellettin B blocks the expression and secretion of a major proangiogenic factor, vascular endothelial growth factor (VEGF), in glioblastoma cells. Stellettin B also reduces angiogenic tubule formation in human umbilical vein endothelial cells (HUVECs). In vivo, we observed that stellettin B decreased blood vesicle formation in developmental zebrafish and suppressed angiogenesis in Matrigel plug transplant assay in mice. Decreased VEGF transcriptional expression was also found in stellettin B⁻treated zebrafish embryos. Overall, we conclude that stellettin B might be a potential antiangiogenic and anti-invasion agent for future development of therapeutic agents for cancer therapy.

9.
Apoptosis ; 23(5-6): 314-328, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29721785

RESUMO

Prodigiosin, a secondary metabolite isolated from marine Vibrio sp., has antimicrobial and anticancer properties. This study investigated the cell death mechanism of prodigiosin in glioblastoma. Glioblastoma multiforme (GBM) is an aggressive primary cancer of the central nervous system. Despite treatment, or standard therapy, the median survival of glioblastoma patients is about 14.6 month. The results of the present study clearly showed that prodigiosin significantly reduced the cell viability and neurosphere formation ability of U87MG and GBM8401 human glioblastoma cell lines. Moreover, prodigiosin with fluorescence signals was detected in the endoplasmic reticulum and found to induce excessive levels of autophagy. These findings were confirmed by observation of LC3 puncta formation and acridine orange staining. Furthermore, prodigiosin caused cell death by activating the JNK pathway and decreasing the AKT/mTOR pathway in glioblastoma cells. Moreover, we found that the autophagy inhibitor 3-methyladenine reversed prodigiosin induced autophagic cell death. These findings of this study suggest that prodigiosin induces autophagic cell death and apoptosis in glioblastoma cells.


Assuntos
Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Prodigiosina/farmacologia , Antineoplásicos , Calnexina/metabolismo , Caspase 3/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Prodigiosina/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
10.
Mar Drugs ; 16(1)2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301308

RESUMO

Osteosarcoma (OS) is a common malignant bone cancer. The relatively high density of a person's bone structure means low permeability for drugs, and so finding drugs that can be more effective is important and should not be delayed. MSPs are marine antimicrobial peptides (AMP) and natural compounds extracted from Nile tilapia (Oreochromis niloticus). MSP-4 is a part of the AMPs series, with the advantage of having a molecular weight of about 2.7-kDa and anticancer effects, although the responsible anticancer mechanism is not very clear. The goal of this study is to determine the workings of the mechanism associated with apoptosis resulting from MSP-4 in osteosarcoma MG63 cells. The study showed that MSP-4 significantly induced apoptosis in MG63 cells, with Western blot indicating that MSP-4 induced this apoptosis through an intrinsic pathway and an extrinsic pathway. Thus, a pretreatment system with a particular inhibitor of Z-IETD-FMK (caspase-8 inhibitor) and Z-LEHD-FMK (caspase-9 inhibitor) significantly attenuated the cleavage of caspase-3 and prevented apoptosis. These observations indicate that low concentrations of MSP-4 can help induce the apoptosis of MG63 through a Fas/FasL- and mitochondria-mediated pathway and suggest a potentially innovative alternative to the treatment of human osteosarcoma.


Assuntos
Anti-Infecciosos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Ciclídeos/metabolismo , Osteossarcoma/tratamento farmacológico , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias Ósseas/patologia , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/efeitos dos fármacos , Caspase 8/metabolismo , Caspase 9/efeitos dos fármacos , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proteína Ligante Fas/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Osteossarcoma/patologia , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Receptor fas/metabolismo
11.
Mar Drugs ; 14(9)2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27598175

RESUMO

BACKGROUND: Our previous in vitro results demonstrated that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine-induced cytotoxicity and apoptosis in a human neuroblastoma cell line, SH-SY5Y, and suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 in lipopolysaccharide-stimulated macrophage cells. The neuroprotective and anti-inflammatory effects of 11-dehydrosinulariolide may be suitable for treating spinal cord injury (SCI). METHODS: In the present study, Wistar rats were pretreated with 11-dehydrosinulariolide or saline through intrathecal injection after a thoracic spinal cord contusion injury induced using a New York University (NYU) impactor. The apoptotic cells were assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression and localization of proinflammatory, apoptosis-associated and cell survival-related pathway proteins were examined through immunoblotting and immunohistochemistry. RESULTS: 11-Dehydrosinulariolide attenuated SCI-induced cell apoptosis by upregulating the antiapoptotic protein Bcl-2 and cell survival-related pathway proteins p-Akt and p-ERK, 8 h after SCI. Furthermore, the transcription factor p-CREB, which regulates Bcl-2 expression, was upregulated after 11-dehydrosinulariolide treatment. On day 7 after SCI, 11-dehydrosinulariolide exhibited an anti-inflammatory effect, attenuating SCI-induced upregulation of the inflammatory proteins iNOS and tumor necrosis factor-α. 11-Dehydrosinulariolide also induced an increase in the expression of arginase-1 and CD206, markers of M2 microglia, in the injured spinal cord on day 7 after SCI. Thus, the anti-inflammatory effect of 11-dehydrosinulariolide may be related to the promotion of an alternative pathway of microglia activation. CONCLUSION: The results show that 11-dehydrosinulariolide exerts antiapoptotic effects at 8 h after SCI and anti-inflammatory effects at 7 days after SCI. We consider that this compound may be a promising therapeutic agent for SCI.


Assuntos
Antozoários/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Apoptose/efeitos dos fármacos , Diterpenos/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Contusões/tratamento farmacológico , Diterpenos/química , Marcação In Situ das Extremidades Cortadas , Locomoção , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/psicologia
12.
PLoS One ; 10(5): e0123474, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970572

RESUMO

Phalaenopsis has a zygomorphic floral structure, including three outer tepals, two lateral inner tepals and a highly modified inner median tepal called labellum or lip; however, the regulation of its organ development remains unelucidated. We generated RNA-seq reads with the Illumina platform for floral organs of the Phalaenopsis wild-type and peloric mutant with a lip-like petal. A total of 43,552 contigs were obtained after de novo assembly. We used differentially expressed gene profiling to compare the transcriptional changes in floral organs for both the wild-type and peloric mutant. Pair-wise comparison of sepals, petals and labellum between peloric mutant and its wild-type revealed 1,838, 758 and 1,147 contigs, respectively, with significant differential expression. PhAGL6a (CUFF.17763), PhAGL6b (CUFF.17763.1), PhMADS1 (CUFF.36625.1), PhMADS4 (CUFF.25909) and PhMADS5 (CUFF.39479.1) were significantly upregulated in the lip-like petal of the peloric mutant. We used real-time PCR analysis of lip-like petals, lip-like sepals and the big lip of peloric mutants to confirm the five genes' expression patterns. PhAGL6a, PhAGL6b and PhMADS4 were strongly expressed in the labellum and significantly upregulated in lip-like petals and lip-like sepals of peloric-mutant flowers. In addition, PhAGL6b was significantly downregulated in the labellum of the big lip mutant, with no change in expression of PhAGL6a. We provide a comprehensive transcript profile and functional analysis of Phalaenopsis floral organs. PhAGL6a PhAGL6b, and PhMADS4 might play crucial roles in the development of the labellum in Phalaenopsis. Our study provides new insights into how the orchid labellum differs and why the petal or sepal converts to a labellum in Phalaenopsis floral mutants.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Orchidaceae/genética , Proteínas de Plantas/genética , Transcriptoma , Mapeamento de Sequências Contíguas , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Mutação , Orchidaceae/anatomia & histologia , Orchidaceae/classificação , Orchidaceae/crescimento & desenvolvimento , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/metabolismo
13.
Chin J Physiol ; 57(5): 286-94, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25241989

RESUMO

Body iron levels have recently been shown to be a strong predictor for non-alcoholic fatty liver disease (NAFLD). The aims of this study were to investigate the prevalence of NAFLD in a general adult population, and to investigate the relationship between body iron levels, NAFLD and the metabolic syndrome (MetS). 2186 adults participated in the third National Nutrition and Health Survey in Taiwan (NAHSIT, 2005-2008). The participants underwent anthropometry measurements and phlebotomy after an overnight fast, and those with excessive alcohol intake, iron overload of serum ferritin > 600 ng/ml, hepatitis viral infection and hepatocellular carcinoma were excluded. Suspected NAFLD was diagnosed by three alanine transaminase (ALT) cut-points: cut-point 1: serum ALT > 40 U/l; cut-point 2: ALT ≥ 25 U/l for male and ALT ≥ 17 U/l for female; and cut-point 3: ALT ≥ 35 U/l for male and ALT ≥ 26 U/l for female. The prevalence proportion of suspected NAFLD among Taiwanese adults was 6.6% (cut-point 1), 36% (cut-point 2); and 14.3% (cut-point 3). Body iron levels were significantly higher in individuals with suspected NAFLD compared with those without. Distribution of hemoglobin levels, but not serum ferritin levels, by decade of age showed strong correlation with the prevalence of suspected NAFLD in individuals with MetS. Multivariate adjusted odds ratio (OR) showed that the best predictors for suspected NAFLD with the MetS were hemoglobin [OR 1.43 (1.21-1.68); P < 0.0001] and hyperlipidemia [OR 1.52 (1.19-1.94); P = 0.0007]. In individuals without MetS, the adjusted OR of suspected NAFLD was markedly higher for hemoglobin [OR 1.25 (1.12-1.41); P < 0.0001]. In conclusion, adults with high hemoglobin levels (14.4 µg/dl for male and 13.2 µg/dl for female) are at the greatest risk for developing abnormal liver function. Hemoglobin test should be considered as a part of clinical evaluation for patients with NAFLD.


Assuntos
Hemoglobinas/metabolismo , Sobrecarga de Ferro/sangue , Sobrecarga de Ferro/epidemiologia , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Adulto , Distribuição por Idade , Idoso , Alanina Transaminase/sangue , Feminino , Ferritinas/sangue , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/epidemiologia , Sobrecarga de Ferro/diagnóstico , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Razão de Chances , Prevalência , Fatores de Risco , Sensibilidade e Especificidade , Distribuição por Sexo , Taiwan/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...