Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 184: 1-12, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35293319

RESUMO

The neural information at different scales exhibits spatial representations and the corresponding features are believed to be conducive for neural encoding. However, existing neural decoding studies on multiscale feature fusion have rarely been investigated. In this study, a multiscale neural information feature fusion framework is presented and we integrate these features to decode spatial routes from multichannel recordings. We design a goal-directed spatial cognitive experiment in which the pigeons need to perform a route selection task. Multichannel neural activities including spike and local field potential (LFP) recordings in the hippocampus are recorded and analyzed. The multiscale neural information features including spike firing rate features, LFP time-frequency energy features, and functional network connectivity features are extracted for spatial route decoding. Finally, we fuse the multiscale feature to solve the neural decoding problem and the results indicate that feature fusion operation improves the decoding performance significantly. Ten-fold cross-validation result analysis shows a promising improvement in the decoding performance using fusing multiscale features by an average of 0.04-0.11 at least than using any individual feature set alone. The proposed framework investigates the possibility of route decoding based on multiscale features, providing an effective way to solve the neural information decoding problems.


Assuntos
Columbidae , Hipocampo , Animais
2.
BMC Zool ; 7(1): 54, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37170160

RESUMO

BACKGROUND: The hippocampus plays an important role to support path planning and adjustment in goal-directed spatial navigation. While we still only have limited knowledge about how do the hippocampal neural activities, especially the functional connectivity patterns, change during the spatial path adjustment. In this study, we measured the behavioural indicators and local field potentials of the pigeon (Columba livia, male and female) during a goal-directed navigational task with the detour paradigm, exploring the changing patterns of the hippocampal functional network connectivity of the bird during the spatial path learning and adjustment. RESULTS: Our study demonstrates that the pigeons progressively learned to solve the path adjustment task after the preferred path is blocked suddenly. Behavioural results show that both the total duration and the path lengths pigeons completed the task during the phase of adjustment are significantly longer than those during the acquisition and recovery phases. Furthermore, neural results show that hippocampal functional connectivity selectively changed during path adjustment. Specifically, we identified depressed connectivity in lower bands (delta and theta) and elevated connectivity in higher bands (slow-gamma and fast-gamma). CONCLUSIONS: These results feature both the behavioural response and neural representation of the avian spatial cognitive learning process, suggesting that the functional disarrangement and reorganization of the connectivity in the avian hippocampus during different phases may contribute to our further understanding of the potential mechanism of path learning and adjustment.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 558-561, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891355

RESUMO

Studies have suggested that the hippocampus (Hp) plays an important role in spatial learning and avian Hp is thought to have similar functions with mammals. However, the dynamic neural pattern of hippocampal activity is still unclear in the continuous spatial learning processes of birds. In this study, we recorded the behavioral data and local field potential (LFP) activity from Hp of pigeons performing goal-directed behavior. Then the spectral properties and time-frequency properties of the LFPs are analyzed, comparing with the behavioral changes during spatial learning. The results indicated that the power of the LFP signal in the gamma band shown decreasing trend during spatial learning. Time-frequency analysis results shown that the hippocampal gamma activity was weakened along with the learning process. The results indicate that spatial learning correlated with the decreased gamma activity in Hp and hippocampal neural patterns of pigeons were modulated by goal-directed behavior.


Assuntos
Columbidae , Aprendizagem Espacial , Animais , Objetivos , Hipocampo
4.
Animals (Basel) ; 11(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34359131

RESUMO

Goal-directed spatial learning is crucial for the survival of animals, in which the formation of the route from the current location to the goal is one of the central problems. A distributed brain network comprising the hippocampus and prefrontal cortex has been shown to support such capacity, yet it is not fully understood how the most similar brain regions in birds, the hippocampus (Hp) and nidopallium caudolaterale (NCL), cooperate during route formation in goal-directed spatial learning. Hence, we examined neural activity in the Hp-NCL network of pigeons and explored the connectivity dynamics during route formation in a goal-directed spatial task. We found that behavioral changes in spatial learning during route formation are accompanied by modifications in neural patterns in the Hp-NCL network. Specifically, as pigeons learned to solve the task, the spectral power in both regions gradually decreased. Meanwhile, elevated hippocampal theta (5 to 12 Hz) connectivity and depressed connectivity in NCL were also observed. Lastly, the interregional functional connectivity was found to increase with learning, specifically in the theta frequency band during route formation. These results provide insight into the dynamics of the Hp-NCL network during spatial learning, serving to reveal the potential mechanism of avian spatial navigation.

5.
Behav Brain Res ; 409: 113289, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836168

RESUMO

How to reach the goal is one of the core problems that animals must solve to complete goal-directed behavior. Studies have proved the important role of hippocampus (Hp) in spatial navigation and shown that hippocampal neural activities can represent the current location and goal location. However, for the different routes linking these two locations, the neural representation mechanism of the route selection in Hp is not clear. Here, we addressed this question using neural recordings of Hp ensembles and decoding analyses in pigeons performing a goal-directed route selection task known to require Hp participation. The hippocampal spike trains and local field potentials (LFPs) of five pigeons performing the task were acquired and analyzed. We found that the neuron firing rates and power spectrum characteristics in Hp could encode the animal's route selection during goal-directed behavior, suggesting that the representation of route selection was coherent for hippocampal spike and LFP signals. Decoding results further indicated that joint spike-LFP features resulted in a significant improvement in the representation accuracy of the route selection. These findings of this study will help to understand the encoding mechanism of route selection in goal-directed behavior.


Assuntos
Comportamento Animal/fisiologia , Tomada de Decisões/fisiologia , Objetivos , Hipocampo/fisiologia , Navegação Espacial/fisiologia , Animais , Columbidae , Eletrocorticografia
6.
Artigo em Inglês | MEDLINE | ID: mdl-33017925

RESUMO

It is a hot research direction to reveal the working mechanism of brain by measuring the connection characteristics of brain function network. In this paper, to decode pigeon behavior outcomes in goal-directed decision task, an experiment based on plus maze was designed and the nidopallium caudolaterale (NCL) of the pigeon was selected as the target brain region. The local field potential (LFP) signals in the waiting area (WA) and turning area (TA) were recorded when the pigeons performed the goal-directed tasks. Then, the brain functional connection networks of the LFPs were constructed and the extracted features were applied to decode pigeon behavior outcomes. Firstly, continuous wavelet transform (CWT) was used to carried out time-frequency analysis and the task-related frequency band (40-60 Hz) was extracted. Then, weighted sparse representation (WSR) method was used to construct the functional connectivity network and the related network features were selected. Finally, k-nearest neighbor (kNN) algorithm was used to decode behavior outcomes. The results show that the energy difference between TA and WA in 40-60 Hz band is significantly higher than those in other bands. The selected features have good discriminability for the representation of the differences between WA and TA. The decoding results also suggest the classification performance of the different behavior outcomes. These results show the effectiveness of the WSR to construct the function network to decode behavior outcomes.


Assuntos
Columbidae , Objetivos , Algoritmos , Animais , Encéfalo , Condicionamento Operante
7.
Brain Sci ; 10(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906650

RESUMO

Goal-directed navigation is a crucial behavior for the survival of animals, especially for the birds having extraordinary spatial navigation ability. In the studies of the neural mechanism of the goal-directed behavior, especially involving the information encoding mechanism of the route, the hippocampus (Hp) and nidopallium caudalle (NCL) of the avian brain are the famous regions that play important roles. Therefore, they have been widely concerned and a series of studies surrounding them have increased our understandings of the navigation mechanism of birds in recent years. In this paper, we focus on the studies of the information encoding mechanism of the route in the avian goal-directed behavior. We first summarize and introduce the related studies on the role of the Hp and NCL for goal-directed behavior comprehensively. Furthermore, we review the related cooperative interaction studies about the Hp-NCL local network and other relevant brain regions supporting the goal-directed routing information encoding. Finally, we summarize the current situation and prospect the existing important questions in this field. We hope this paper can spark fresh thinking for the following research on routing information encoding mechanism of birds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...