Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(11): 7796-7824, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456414

RESUMO

Sodium-ion batteries (SIBs) are considered as an alternative to and even replacement of lithium-ion batteries in the near future in order to address the energy crisis and scarcity of lithium resources due to the wide distribution and abundance of sodium resources on the earth. The exploration and development of high-performance anode materials are critical to the practical applications of advanced SIBs. Among various anode materials, bimetallic oxides (BMOs) have attracted special research attention because of their abundance, easy access, rich redox reactions, enhanced capacity and satisfactory cycling stability. Although many BMO anode materials have been reported as anode materials in SIBs, very limited studies summarized the progress and prospect of BMOs in practical applications of SIBs. In this review, recent progress and challenges of BMO anode materials for SIBs have been comprehensively summarized and discussed. First, the preparation methods and sodium storage mechanisms of BMOs are discussed. Then, the challenges, optimization strategies, and sodium storage performance of BMO anode materials have been reviewed and summarized. Finally, the prospects and future research directions of BMOs in SIBs have been proposed. This review aims to provide insight into the efficient design and optimization of BMO anode materials for high-performance SIBs.

2.
Sci Bull (Beijing) ; 68(23): 2945-2953, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37957068

RESUMO

Aqueous proton battery is considered as a promising candidate for the electrochemical energy storage system with the merits of safety, environmental benignity, fast kinetics and low cost. The realization of these advantages relies on the development of suitable and easy-access electrode materials. Herein, micron-sized H2MoO3/Polyaniline (PANI) is developed as a high-rate and stable anode material in proton battery. Contrary to the pseudocapacitive nature of most anode materials, the H2MoO3/PANI presents diffusion-controlled charge storage mechanism with both high capacity and high rate-capability. The H2MoO3/PANI electrode shows a rather high capacity of 268.2 mAh g-1 at 1.0 A g-1, and a surprisingly high rate-capability with ∼50% capacity retention even at an extremely high current density of 200.0 A g-1. Detailed analyses demonstrate the Grotthuss mechanism of ultrafast proton conduction in H2MoO3/PANI. The constructed proton full cell based on H2MoO3/PANI delivers a high energy density of 42.1 Wh kg-1 at 800.0 W kg-1. Impressively, the proton full cell shows fast proton transportation even in the frozen electrolyte, and ∼70% of the room temperature capacity is retained at -20 °C. These excellent proton storage behaviors provide insights into the practical applications of micron-sized electrode materials in proton batteries at low temperatures.

3.
PLoS One ; 16(4): e0250267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33882103

RESUMO

4-phenylbutyrate (4-PBA), a terminal aromatic substituted fatty acid, is used widely to specifically attenuate endoplasmic reticulum (ER) stress and inhibit histone deacetylases (HDACs). In this study, we investigated the effect of 4-PBA on cardiac differentiation of mouse embryonic stem (ES) cells. Herein, we found that 4-PBA regulated cardiac differentiation in a stage-specific manner just like trichostatin A (TSA), a well-known HDAC inhibitor. 4-PBA and TSA favored the early-stage differentiation, but inhibited the late-stage cardiac differentiation via acetylation. Mechanistic studies suggested that HDACs exhibited a temporal expression profiling during cardiomyogenesis. Hdac1 expression underwent a decrease at the early stage, while was upregulated at the late stage of cardiac induction. During the early stage of cardiac differentiation, acetylation favored the induction of Isl1 and Nkx2.5, two transcription factors of cardiac progenitors. During the late stage, histone acetylation induced by 4-PBA or TSA interrupted the gene silence of Oct4, a key determinant of self-renewal and pluripotency. Thereby, 4-PBA and TSA at the late stage hindered the exit from pluripotency, and attenuated the expression of cardiac-specific contractile proteins. Overexpression of HDAC1 and p300 exerted different effects at the distinct stages of cardiac induction. Collectively, our study shows that timely manipulation of HDACs exhibits distinct effects on cardiac differentiation. And the context-dependent effects of HDAC inhibitors depend on cell differentiation states marked by the temporal expression of pluripotency-associated genes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Células-Tronco Embrionárias Murinas , Fenilbutiratos/farmacologia , Animais , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos
4.
Cytokine ; 138: 155376, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33243628

RESUMO

Pathological cardiac hypertrophy, characterized by enlarged cell size and fetal gene reactivation, ultimately leads to cardiac dysfunction and heart failure. The expression of transforming growth factor beta 1 (TGFß1) is often elevated in experimental models of cardiac hypertrophy. In the present study, we observed the activation of Wnt/ß-catenin signaling in TGFß1-induced cardiac hypertrophy. TGFß1 stimulation decreased the phosphorylation levels of ß-catenin and triggered the nuclear accumulation of ß-catenin. In turn, TGFß1 enhanced the expression of c-Myc, which is a transcriptional target of canonical Wnt/ß-catenin pathway. Knockdown of ß-catenin completely blocked TGFß1-induced c-Myc upregulation. Wnt3a is an important Wnt ligand associated with cardiac fibrosis and hypertrophy. Further investigation revealed that TGFß1 can upregulate Wnt3a expression in an ALK5-Smad2/3-dependent manner. A consensus Smad binding sequence is located within the Wnt3a promoter, and TGFß1 stimulation enhanced recruitment of Smad2/3 onto the Wnt3a promoter. Meanwhile, Wnt3a overexpression also stimulated TGFß1 expression. Chemical inhibition of Wnt/ß-catenin signaling partially attenuated TGFß1-induced hypertrophic responses. These findings suggest crosstalk between TGFß1 and canonical Wnt/ß-catenin pathways in cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Proteína Wnt3A/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Hipertrofia , Ligantes , Fosforilação , Regiões Promotoras Genéticas , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteínas Smad/metabolismo , Proteínas Wnt/metabolismo
5.
Cytokine ; 136: 155237, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32818702

RESUMO

Ischemic injury is a major cause of several cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy, and ventricular remodeling. Using an in vitro hypoxia model to mimic ischemia, we found that hypoxia stimulated Wnt3a expression. A mechanistic study showed that hypoxia-inducible factor 1α (HIF-1α) was directly recruited to the Wnt3a promoter. Wnt3a overexpression significantly decreased cell viability, promoted the generation of apoptotic cells, and enhanced hypoxia-induced injury in neonatal rat cardiomyocytes. This was partially through the upregulation of Caspase-3 mRNA levels and cleaved PARP-1 protein levels. In addition, we observed that Wnt3a exacerbated hypoxia-induced mitochondrial dysfunction and cytosolic release of cytochrome C. Furthermore, we found that Sirt3, a mitochondrial NAD+-dependent deacetylase that modulates mitochondrial metabolism and homeostasis, was negatively regulated by Wnt3a. Conversely, Sirt3 overexpression repressed Wnt3a expression and ameliorated the hypoxia-induced mitochondrial dysfunction. Overall, our findings suggest that the hypoxia-Wnt3a-Sirt3 regulatory axis might be a potential target for cell protection in cardiac ischemia and hypoxia.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Sirtuínas/metabolismo , Regulação para Cima , Proteína Wnt3A/biossíntese , Animais , Hipóxia Celular , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...