Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 13(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003624

RESUMO

Blood-pool agents (BPAs) are MRI contrast agents (CAs) characterized by their long circulation in the vascular system to provide an extended time window for high-resolution MR angiography (MRA). Prolonged vascular retention, however, impedes the excretion of BPAs. Therefore, chemical strategy to regulate the balance between retention and clearance is important to reach optimal pharmacokinetics. We recently developed MnP2, the first Mn(III)-porphyrin (MnP) based BPA. MnP2 shows high T1 relaxivity (r1) and high affinity to human serum albumin (HSA) that leads to up to 48-h vascular retention in rats. However, upon albumin binding, the r1 is decreased. To modulate vascular retention time and plasma r1, a regioisomer of MnP2, m-MnP2, was synthesized. The free m-MnP2 exhibits lower r1 than that of MnP2 at magnetic fields above 2 MHz, which agrees with their relative hydrodynamic sizes. The HSA binding of m-MnP2 was evaluated using UV-Vis spectroscopy and found to have tuned-down affinity in comparison with MnP2. Upon HSA binding, the protein complex of m-MnP2 exhibits an r1 of 11.8 mM-1 s-1 at 3 T, which is higher than that of MnP2 bound to HSA. Taken together, this demonstrated the role of molecular geometry in optimizing the pharmacokinetics of albumin-targeting BPAs.

2.
PLoS One ; 13(5): e0196998, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29795583

RESUMO

Magnetic resonance imaging (MRI) contrast agents (CAs) are chemical compounds that can enhance image contrast on T1- or T2- weighted MR image. We have previously demonstrated the potential of MnCl2, a manganese-based CA, in cellular imaging of breast cancer using T1-weighted MRI. In this work, we examined the potential of another class of manganese-based CAs, manganese porphyrins (MnPs), for sensitive cellular detection of multiple clinical subtypes of breast cancer using quantitative MRI. Using a clinical 3.0-T MRI scanner, the relaxivities of two MnPs, MnTPPS4 and MnTPPS3NH2, and conventional Gd-DTPA (control) were measured in ultrapure water and their T1 contrast enhancement patterns were characterized in multiple clinical subtypes of breast cancer. The toxicity of the three CAs was evaluated in vitro. Compared to Gd-DTPA, both MnTPPS3NH2 and MnTPPS4 enabled a more sensitive multi-subtype detection of four breast cell lines at doses that posed no cytotoxic effects, with MnTPPS3NH2 producing the greatest positive enhancement. The superior T1 enhancement capabilities of MnPs over Gd-DTPA are statistically significant and are likely due to their greater cellular uptake and relaxivities. The results demonstrate that multiple clinical subtypes of breast cancer can be imaged on a 3.0-T MRI scanner using MnPs as T1 cellular CAs.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Imageamento por Ressonância Magnética/métodos , Porfirinas/farmacocinética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/química , Meios de Contraste/farmacologia , Feminino , Gadolínio DTPA/química , Gadolínio DTPA/farmacologia , Humanos , Células MCF-7 , Imageamento por Ressonância Magnética/instrumentação , Porfirinas/química , Porfirinas/farmacologia
3.
Mol Imaging ; 132014.
Artigo em Inglês | MEDLINE | ID: mdl-25248390

RESUMO

The lung remains one of the most challenging organs to image using magnetic resonance imaging (MRI) due to intrinsic rapid signal decay. However, unlike conventional modalities such as computed tomography, MRI does not involve radiation and can provide functional and morphologic information on a regional basis. Here we demonstrate proof of concept for a new MRI approach to achieve substantial gains in a signal to noise ratio (SNR) in the lung parenchyma: contrast-enhanced ultrashort echo time (UTE) imaging following intravenous injection of a high-relaxivity blood-pool manganese porphyrin T1 contrast agent. The new contrast agent increased relative enhancement of the lung parenchyma by over 10-fold compared to gadolinium diethylene triamine pentaacetic acid (Gd-DTPA), and the use of UTE boosted the SNR by a factor of 4 over conventional T1-weighted gradient echo acquisitions. The new agent also maintains steady enhancement over at least 60 minutes, thus providing a long time window for obtaining high-resolution, high-quality images and the ability to measure a number of physiologic parameters.


Assuntos
Compostos de Bifenilo , Meios de Contraste , Pulmão/ultraestrutura , Metaloporfirinas , Animais , Feminino , Imageamento por Ressonância Magnética/métodos , Ratos , Ratos Long-Evans
4.
J Biol Inorg Chem ; 19(2): 229-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24407461

RESUMO

As the first clinically approved gadolinium-based blood-pool MRI contrast agent, gadofosveset was designed to bind to human serum albumin (HSA) reversibly, extending the circulation time in the bloodstream. This valuable pharmacokinetic property required for vasculature imaging, however, raises the risk of release and accumulation of gadolinium in vivo. The binding of gadofosveset to HSA significantly increases the relaxivity at low field, which decreases drastically when the magnetic field increases, limiting the applications of gadofosveset at fields of 3 T and higher. To address those challenges, we evaluated a novel dimeric manganese(III) porphyrin (MnP2) in vitro and in vivo as a potential gadolinium-free blood-pool agent. Through multiple spectroscopic studies, we demonstrated that MnP2 binds to HSA tightly. MnP2 exhibits a moderate relaxivity decrease on HSA binding. Nevertheless, owing to the unique field-dependent relaxation behaviors and the dimeric construct (two Mn(III) ions per complex), MnP2-HSA has a molar relaxivity twice that of the gadofosveset-HSA complex at 3 T. Through intravenous injection in rats, MnP2 exhibits long retention and significant contrast enhancement in the vascular compartment, as tested in a 3-T high-field clinical MRI scanner. Taken together, these data demonstrate that MnP2 represents a new class of gadolinium-free blood-pool agents suitable for both regular and high-field applications.


Assuntos
Dimerização , Imageamento por Ressonância Magnética/métodos , Manganês/química , Metaloporfirinas/metabolismo , Albumina Sérica/metabolismo , Animais , Meios de Contraste/química , Meios de Contraste/metabolismo , Meios de Contraste/farmacocinética , Feminino , Humanos , Metaloporfirinas/química , Metaloporfirinas/farmacocinética , Ligação Proteica , Ratos
5.
J Med Chem ; 57(2): 516-20, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24328058

RESUMO

Mn(III) porphyrin (MnP) holds the promise of addressing the emerging challenges associated with Gd-based clinical MRI contrast agents (CAs), namely, Gd-related adverse effect and decreasing sensitivity at high clinical magnetic fields. Two complementary strategies for developing new MnPs as Gd-free CAs with optimized biocompatibility were established to improve relaxivity or clearance rate. MnPs with distinct and tunable pharmacokinetic properties can consequently be constructed for different in vivo applications at clinical field of 3 T.


Assuntos
Compostos de Bifenilo/síntese química , Meios de Contraste/síntese química , Complexos de Coordenação/síntese química , Manganês , Metaloporfirinas/síntese química , Porfirinas/síntese química , Animais , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacocinética , Meios de Contraste/química , Meios de Contraste/farmacocinética , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , Gadolínio , Imageamento por Ressonância Magnética , Metaloporfirinas/química , Metaloporfirinas/farmacocinética , Porfirinas/química , Porfirinas/farmacocinética , Ratos , Relação Estrutura-Atividade
6.
J Magn Reson Imaging ; 40(6): 1474-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24214904

RESUMO

PURPOSE: To evaluate a new class of manganese porphyrins with tunable pharmacokinetics as potential gadolinium (Gd)-free T1 agents for contrast-enhanced magnetic resonance imaging (MRI). MATERIALS AND METHODS: Two new contrast agents, MnTCP and MnP2, were evaluated in four female rats. MRI was performed daily up to 3 days postinjection (0.05 mmol/kg) on a 3 T clinical scanner. T1 relaxation times and dynamic contrast-enhanced MRI were performed to assess contrast enhancement and clearance in blood, heart, liver, kidney, and muscle. RESULTS: Relative T1 decreases were similar for MnTCP and Gd-DTPA in all tissues but were significantly larger (P < 0.05) for MnP2 in blood, heart, kidney, and liver (2-6-fold larger). Clearance of MnTCP was similar to Gd-DTPA, with T1 returning to baseline by 40 minutes and complete elimination in 1 day. MnP2 was cleared from blood after 2 days and sustained a lowered T1 in other tissues for at least 1 hour (P < 0.05). The maximum enhancement, slope, and time-to-peak were similar between contrast agents. Only the parameter AUC60 differed, with MnP2 yielding the largest AUC60 values primarily through longer retention in tissue. CONCLUSION: MnTCP and MnP2 offer distinct applications as Gd-free T1 contrast agents. MnTCP behaves like a Gd-DTPA analog, while MnP2 provides significantly greater and longer positive signal enhancement.


Assuntos
Compostos de Magnésio/farmacocinética , Imageamento por Ressonância Magnética/métodos , Porfirinas/farmacocinética , Imagem Corporal Total/métodos , Animais , Meios de Contraste/farmacocinética , Feminino , Taxa de Depuração Metabólica , Especificidade de Órgãos/fisiologia , Ratos , Ratos Long-Evans , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...