Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 344: 123404, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244901

RESUMO

Antibiotics are causing widespread concern as one of the emerging contaminants. There is the abuse of antibiotics in high-density open aquaculture, and the tailwater is often discharged into surrounding rivers. At the same time, the water replenishment of open aquaculture ponds from nearby rivers containing antibiotic contamination from different sources may result in cross-contamination. However, it is still unclear which pollution intensity is greater in rivers or in open aquaculture. So in this paper, the levels of 20 antibiotics (i.e., Fluoroquinolones (FQs), Sulfonamides (SAs), Tetracyclines (TCs), Macrolides (MLs) and Lincosamides (LCs)) in rivers and high-density open aquaculture ponds were investigated in the Baini River basin in the suburbs of Guangzhou, China. The results showed that norfloxacin (NFX) was the predominant antibiotic in river and aquaculture water, with concentrations ranging from 6.12 to 156.04 ng/L and from 7.47 to 82.62 ng/L in both aquatic systems, respectively. As for the pollution intensity of antibiotics, the annual pollution contribution (28.64 kg/a) of the river water supply to open aquaculture is higher than that (10.81 kg/a) of open aquaculture to the river, which means river pollution has a greater impact on aquaculture ponds. The risk quotient (RQ) showed that the ecological risk of lincomycin (LIN), erythromycin (ERY), sulfamethoxazole (SMX), norfloxacin (NFX), ciprofloxacin (CFX) and chlortetracycline (CTC) in rivers and aquaculture environments had high ecological risks from 1.21 to 1.81. Water interactions with contaminated rivers will result in a corresponding increase in the ecological risk of antibiotics in the aquaculture environment. Overall, according to the results, the risk of polluted rivers to open aquaculture cannot be ignored, and it is recommended that open aquaculture should use these water sources with caution, and that the water quality evaluation of aquaculture water should be increased with monitoring indicators for emerging contaminants such as antibiotics.


Assuntos
Antibacterianos , Norfloxacino , Lagoas , Rios , Aquicultura
2.
Sci Total Environ ; 912: 169568, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38143001

RESUMO

Constructed wetlands (CWs) are a cost-effective and environmentally friendly wastewater treatment technology. The influent chemical oxygen demand (COD)/nitrogen (N) ratio (CNR) plays a crucial role in microbial activity and purification performance. However, the effects of CNR changes on microbial diversity, interactions, and assembly processes in CWs are not well understood. In this study, we conducted comprehensive mechanistic experiments to investigate the response of CWs to changes in influent CNR, focusing on the effluent, rhizosphere, and substrate microbiota. Our goal is to provide new insights into CW management by integrating microbial ecology and environmental engineering perspectives. We constructed two groups of horizontal subsurface flow constructed wetlands (HFCWs) and set up three influent CNRs to analyse the microbial responses and nutrient removal. The results indicated that increasing influent CNR led to a decrease in microbial α-diversity and niche width. Genera involved in nitrogen removal and denitrification, such as Rhodobacter, Desulfovibrio, and Zoogloea, were enriched under medium/high CNR conditions, resulting in higher nitrate (NO3--N) removal (up to 99 %) than that under lower CNR conditions (<60 %). Environmental factors, including water temperature (WT), pH, and phosphorus (P), along with CNR-induced COD and NO3--N play important roles in microbial succession in HFCWs. The genus Nitrospira, which is involved in nitrification, exhibited a significant negative correlation (p < 0.05) with WT, COD, and P. Co-occurrence network analysis revealed that increasing influent CNR reduced the complexity of the network structure and increased microbial competition. Analysis using null models demonstrated that the microbial community assembly in HFCWs was primarily driven by stochastic processes under increasing influent CNR conditions. Furthermore, HFCWs with more stochastic microbial communities exhibited better denitrification performance (NO3--N removal). Overall, this study enhances our understanding of nutrient removal, microbial co-occurrence, and assembly mechanisms in CWs under varying influent CNRs.


Assuntos
Desnitrificação , Microbiota , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Nitrificação , Nitrogênio/química , Água , Eliminação de Resíduos Líquidos/métodos
3.
Front Plant Sci ; 14: 1276289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941677

RESUMO

Phytoplankton are key members of river ecosystems wherein they influence and regulate the health of the local environment. Headwater streams are subject to minimal human activity and serve as the sources of rivers, generally exhibiting minimal pollution and strong hydrodynamic forces. To date, the characteristics of phytoplankton communities in headwater streams have remained poorly understood. This study aims to address this knowledge gap by comparing phytoplankton communities in headwater streams with those in plain rivers. The results demonstrated that within similar watershed sizes, lower levels of spatiotemporal variability were observed with respect to phytoplankton community as compared to plain rivers. Lower nutrient levels and strong hydrodynamics contribute to phytoplankton growth limitation in these streams, thereby reducing the levels of spatiotemporal variation. However, these conditions additionally contribute to greater phytoplankton diversity and consequent succession towards Cyanophyta. Overall, these results provide new insights into the dynamics of headwater stream ecosystems and support efforts for their ecological conservation.

4.
Environ Monit Assess ; 195(3): 396, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780021

RESUMO

With global climate change and increasingly extreme weather conditions, the water quality of the Lijiang River Basin (LRB) is facing huge threats. At present, there is still a lack of systematic research on water quality indicators and the influence of indirect factors such as meteorological factors on it in the LRB. Therefore, this study is based on the meteorological, hydrological, and water quality data of the LRB from 2012 to 2018, using the Mann-Kendall test, Morlet wavelet method, Spearman's rank correlation coefficient, sensitivity, and contribution rate to quantitative analysis of the relationship between climate conditions and water quality indicators. The results show that the change trends of these hydrological and climatic conditions have almost no significant sudden change; precipitation and streamflow are decreasing each year; the streamflow trend exhibits time hysteresis; precipitation has a stronger influence downstream than on the local area; water quality indicators of both stations exhibited a change period of around 18 to 20 months, with the exception of pH. Water quality indicators are insensitive to precipitation and streamflow, and sensitive to humidity and wind speed; DO was negatively correlated with climate indicators apart from wind speed; almost all water quality indicators in Yangshuo are highly sensitive to air temperature, and the contribution rate of air temperature to ORP and TP reached 4.81% and 3.56%, respectively; sunshine duration has a positive impact on reducing NH4-N and TP. The difference between Yangshuo and Guilin is mostly due to the input of external sources on both sides of the Lijiang River, which results in variations in climate conditions sensitivities.


Assuntos
Indicadores de Qualidade em Assistência à Saúde , Qualidade da Água , Monitoramento Ambiental , China , Hidrologia , Mudança Climática
5.
Environ Sci Pollut Res Int ; 30(12): 34760-34774, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36517613

RESUMO

To mitigate the serious environmental problems caused by aquaculture wastewater discharge, the development of improved aquaculture systems with more self-purification capacity and less environmental impact has become essential. A novel recirculating aquaculture system (RAS) with ecological ponds was introduced. However, the mechanism of how the ecological ponds decompose the nutrients from the residual feed and excrement of fish is still unclear. Therefore, we designed a seven-week field experiment to explore the dynamic of water quality and the shift of bacterial communities during the initial stage of the RAS ecosystem to maintain the stability of the system. According to the result, the dissolved oxygen concentration maintained at 5.63 to 10.22 mg·L-1 in aquaculture water, and electrical conductivity increased by 100% to over 800 µs·cm-1. High-throughput sequencing showed that the abundance and diversity of the bacterial communities in sediment samples were significantly higher than in water samples, and the Proteobacteria, Bacteroidetes, Cyanobacteria, and Actinobacteria were dominant phyla in all samples. The relative abundance of ammonia-oxidizing archaea, ammonia-oxidizing bacteria, and nitrite-oxidizing bacteria was lower than 0.10, but rising. Redundancy analysis suggested that TOC, EC, NO3-, and NO2- were the most important factors shaping the bacterial communities in aquaculture water. Our studies assessed the RAS with ecological ponds for the first time based on water quality parameters and bacterial communities, which indicates that decomposition capacity is insufficient but improved at the initial stage of the operation, and potential risks like eutrophication require attention.


Assuntos
Ecossistema , Qualidade da Água , Animais , Amônia , Bactérias/genética , Aquicultura , Lagoas/microbiologia , RNA Ribossômico 16S
6.
J Environ Manage ; 324: 116311, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162319

RESUMO

The recirculating aquaculture system (RAS) has attracted much attention in China as a way to rapidly transform and upgrade aquaculture ponds to realize zero-emissions of pollutants in aquaculture tail water. Tail water purification ponds (TWPPs) play an important role in the treatment of aquaculture wastewater. However, until now, there have been few reports on the occurrence of antibiotics in RAS and the removal of antibiotics from the TWPPs of RAS. Therefore, this study focused on the occurrence of antibiotics in a typical ecological RAS. For comparison, the same measurements were simultaneously carried out in nearby open aquaculture ponds and rivers. The pollution level and spatial distribution of antibiotics in the RAS and the removal of antibiotics in the TWPPs were explored. The results showed that (1) eleven and twelve antibiotics were detected in water and sediment samples in the RAS, respectively, but no antibiotics were found in fish muscles and feed. Erythromycin (ERY), lincomycin (LIN), and ciprofloxacin (CFX) were the three main types of antibiotics found in water and sediment samples. (2) The TWPPs of the RAS can effectively remove antibiotics in aquaculture water. The antibiotic concentration in recirculating aquaculture ponds of the RAS was as high as 180 ng/L. After treatments in the TWPPs, the antibiotic concentration of aquaculture water decreased to 81.6 ng/L (3) The antibiotic concentrations in recirculating aquaculture ponds (25.2-180 ng/L) were lower than those in the nearby open aquaculture ponds (126-267.3 ng/L), and the concentration of antibiotics in the sediments of recirculating aquaculture ponds was up to 22.9 ng/g, while that in TWPPs was as high as 56.1 ng/g. In conclusion, the antibiotic residues in the RAS were low after antibiotics were banned in feed in China, and the removal of antibiotics in the TWPPs was more pronounced. Furthermore, cross-contamination was found between the RAS, surrounding open aquaculture ponds and the river, and the water supply of the RAS was likely to be the main contributor of antibiotics in the aquaculture environments. This study can help the government formulate discharge standards for antibiotics in aquaculture and also provide a reference for the transformation and upgrading of aquaculture ponds to achieve a zero-emission aquaculture mode.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Antibacterianos/análise , Poluentes Químicos da Água/análise , Aquicultura , Lagoas , Água , China
7.
Artigo em Inglês | MEDLINE | ID: mdl-35805749

RESUMO

As the climate and the external environment have changed, the environmental factors of the Lijiang River Basin (LRB) have changed, posing new threats to the environmental quality, ecosystem balance, and management and protection of the water environment of the Lijiang River. Water quality indicators and environmental factors vary spatially along the Lijiang River, which runs through urban areas, farmland, and karst areas. However, research on the response of water quality to water environmental factors is still lacking. Within this context, this study considered statistical methods and hydrological, meteorological, and water quality data of the middle and lower reaches of the Lijiang River from 2012 to 2018, expounded on the temporal and spatial change characteristics and evolution trends of water quality indicators; we analyzed the correlation between water quality indicators and environmental factors; we quantitatively assessed the sensitivity and contribution rate of water quality indicators to environmental factors. The results demonstrated that rainfall feedback on the river streamflow was lagging, and upstream precipitation often affected downstream streamflow. The water quality in the upper reaches of Guilin has improved year by year, and pollution levels have increased slightly when flowing through the urban area of Guilin. In spite of this, it still falls within the range of self-purification. River characteristics heavily influence the impact of environmental factors on water quality indicators; in contrast, the effects of different locations along the same river are more similar. Four water quality indicators are negatively correlated with water temperature, pH, and dissolved oxygen (DO). The sensitivities of ammonia nitrogen (NH4-N) and chemical oxygen demand (CODMn) to streamflow increase with the flow direction. The contribution rates of DO-to-total phosphorus (TP) and pH-to-TP are over -6%. Water temperature is the major contributing factor in the Lijiang River, while DO has a higher contribution in tributaries. The external sources affect the concentration of various water quality indicators and the sensitivity of water quality indicators to the external environment. There should be a series of measures implemented to reduce pollution, such as using oxygenation or chemical means to increase pH in Dahe and Yangshuo to control water pollutants. Tourism and particular karst topography make LRB's calculations unique, but the research method can be applied to other watersheds as well.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , China , Ecossistema , Monitoramento Ambiental/métodos , Nitrogênio/análise , Fósforo/análise , Rios , Poluentes Químicos da Água/análise
8.
J Appl Microbiol ; 132(3): 2450-2463, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34319633

RESUMO

AIMS: To evaluate the effects of periodic application of effective microorganism (EM) bacteria and calcium peroxide on water environment restoration of a trench wetland ecosystem and its impact on microbiota in water and sediment. METHODS AND RESULTS: The EM bacteria and calcium peroxide were alternately sprayed into the trench water, and changes in the physicochemical indices of water and sediment, and in microbiota structure were subsequently investigated. Alternately spraying of calcium peroxide and EM bacteria improved the water quality, especially in terms of the dissolved oxygen and transparency of water body, and could further reduce the levels of total nitrogen, total phosphorus and ammonia nitrogen. At the same time, the microbiota structure of the water body was significantly changed by spraying with calcium peroxide and EM bacteria, and the relative abundances of Pseudanabaena, Legionellaceae, Planktothrix, Planctomyces, Phenylobacterium, Rhodobacter, Rhodoferax and Aquirestis were significantly increased. However, there was no significant effect on the physicochemical indexes and microbiota composition of the sediment. CONCLUSIONS: The water quality of the Baiyangdian trench could be significantly restored by regular sprinkling of calcium peroxide and EM bacteria. SIGNIFICANCE AND IMPACT OF STUDY: The results provide an effective technical method for the restoration of trench wetland water.


Assuntos
Microbiota , Áreas Alagadas , Bactérias , Ecossistema , Nitrogênio , Fósforo
9.
Environ Sci Pollut Res Int ; 28(13): 16602-16615, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389583

RESUMO

Landscape patterns have a substantial effect on non-point source (NPS) pollution in watersheds. Facilitating sustainable development of mountain-rural areas is a major priority for China. Knowledge of the impacts of various landscapes on water quality in these areas is critical to meeting environmental goals. This study applied the Soil and Water Assessment Tool (SWAT) to create a hydrologic and water quality model of the study watershed; then, the relationship between water quality and landscape patterns was investigated using multiple linear regression and redundancy analysis. The results show that the western sub-basins had higher nitrogen pollution loads, and the total nitrogen concentration reached a maximum value of 3.91 mg/L; the eastern sub-basins had a higher pollution load of phosphorous featured by maximum total phosphorous concentration of 2.15 mg/L. The water quality of the entire watershed in all scenarios tended to deteriorate over time. Landscape metrics accounted for 81.7% of the total variation in pollutant indicators. The percentage of forest landscape was negatively correlated with NPS pollution, while other types of landscape showed a positive correlation. The patch density, landscape shape index, and largest patch index of urban and agricultural lands were negatively correlated with pollutant concentrations. Upland landscapes contributed more pollutants than paddy fields. Some measures, e.g., returning grassland and farmland to forest in steep regions and replacing upland crops with paddy fields, were recommended for mitigating NPS pollution in the study watershed.


Assuntos
Poluição Difusa , Poluentes Químicos da Água , China , Monitoramento Ambiental , Nitrogênio/análise , Rios , Poluentes Químicos da Água/análise , Qualidade da Água
10.
J Environ Sci (China) ; 90: 331-342, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081329

RESUMO

Nitrogen in pond sediments is a major water quality concern and can impact the productivity of aquaculture. Dissolved oxygen is an important factor for improving water quality and boosting fish growth in aquaculture ponds, and plays an important role in the conversion of ammonium-nitrogen (NH4+-N) to nitrite-nitrogen (NO2--N) and eventually nitrate-nitrogen (NO3--N). A central goal of the study was to identify the best aeration method and strategy for improving water quality in aquaculture ponds. We conducted an experiment with six tanks, each with a different aeration mode to simulate the behavior of aquaculture ponds. The results show that a 36 hr aeration interval (Tc = 36 hr: 36 hr) and no aeration resulted in high concentrations of NH4+-N in the water column. Using a 12 hr interval time (Tc = 12 hr: 12 hr) resulted in higher NO2--N and NO3--N concentrations than any other aeration mode. Results from an 8 hr interval time (Tc = 8 hr: 8 hr) and 24 hr interval time (Tc = 24 hr: 24 hr) were comparable with those of continuous aeration, and had the benefit of being in use for only half of the time, consequently reducing energy consumption.


Assuntos
Aquicultura , Lagoas , Água , Animais , Sedimentos Geológicos , Nitrogênio
11.
Sci Total Environ ; 688: 1112-1123, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31726542

RESUMO

Sulfate (SO42-) has received attention as means of monitoring water quality and pollution. However, the SO42- content of rivers, lakes, and reservoirs varies significantly by season, so environmental factors such as temperature can affect it. An experiment was conducted with a series of aerobic and anaerobic tanks containing Pearl River sediments and distilled water to assess the release of SO42- from sediments under controlled conditions. "Black-odor river" refers to near anoxic conditions in the water column and foul odors emanating from affected rivers in southeastern China. These river systems typical have sediments containing ammonia (NH3), hydrogen sulfide (H2S), and organic sulfide compounds in excess, and precipitates of sulfide (S2-), with ferrous (Fe2+) or manganese (Mn2+). SO42- concentration was measured at various depths in pore water and in the water column while controlling temperature and dissolved oxygen (DO) concentrations. Interpolation of study results revealed that SO42- content was highest between temperatures of 20 °C and 25 °C. The relationship between SO42- concentration, which varied with temperature and time, was fit using a linearized Michaelis-Menten function (R2 = 0.69). The release of SO42- to the water column was accelerated during the experiment (for temperatures higher than 20 °C), and led to higher SO42- content in the water column than in pore water. The maximum concentration of SO42- within the sediment occurred at a temperature of 20 °C. Comparing aerated and non-aerated tanks at 20 °C, we found that O2 restricted SO42- content in the water column; DO could, in turn, also be controlled by temperature. Fe2+ and Mn2+ had a negative correlation with SO42-.

12.
R Soc Open Sci ; 6(7): 182061, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31417696

RESUMO

An in-pond raceway system (IPRS) is an effective intensive aquaculture practice for regions with high water consumption and limited land resources. Water flow and dissolved oxygen (DO) are important for sustainable aquaculture. Several innovations have been made in IPRS design and operation to increase water exchange and DO concentration; one of these is the aeration plug-flow device (APFD). The APFD is commonly used in China as the only power source for water recirculation in aquaculture ponds. Understanding of the hydrodynamics of the system is necessary to improve the design of the IPRS with APFD. To this end, we performed experimental studies on a model system. We measured three-dimensional velocity at various locations using an Acoustic Doppler Velocimeter. Velocity distribution and turbulence characteristics were assessed, and plug-flow characteristics were analysed. Two patterns of velocity and turbulence in horizontal sections were observed: near the APFD, the water flow was intensively pushed downstream and simultaneously recirculated; farther away, the reflux area gradually decreased and the velocity and turbulence distribution trended towards uniform. Secondary flows occurred in different directions, which improved the diffusion of materials and DO retention. The system is effectively self-circulating, and the plug-flow capability may be scaled up for commercial application.

13.
Int J Environ Res Public Health ; 11(2): 1557-72, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24477216

RESUMO

With the yearly increasing marine culture activities in floating cages in Daya Bay, China, the effects of pollution may overlap and lead to more severe water environmental problems. In order to track the impacts of the marine culture in floating cages on water environment, sediments and overlying water were sampled by cylindrical samplers at three representative aquaculture areas of Daya Bay. The water content, porosity, density of sediments as well as the vertical distributions of ammonia nitrogen and active phosphate in pore water along sediments depth were measured. The release rate and annual released quantity of the nutrients across sediment-water interface were calculated using Fick's Law. A horizontal two-dimensional mathematical model was developed to compute the spatial and temporal distributions of the nutrients in seawater after being released across the sediment-water interface. The results showed that the sediments, with a high content and a large annual released quantity of nitrogen and phosphorus, constitute a potential inner source of seawater pollution. Influenced by tide and water depth, the scope of diffusion and migration of the nutrients appears as a long belt which is about 1 km long and 50 m wide. Seawater in this area is vulnerable to eutrophication.


Assuntos
Aquicultura , Sedimentos Geológicos/química , Nitrogênio/análise , Fósforo/análise , Água do Mar/química , Animais , China , Decápodes , Difusão , Perciformes , Poluição da Água/análise
14.
Water Environ Res ; 85(5): 434-46, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23789573

RESUMO

This study developed an improved Eulerian model for the simulation of an air-water flow field over stepped spillways. The improved drag model applied different drag coefficients for bubbles and for free surface flows or gas cavities. Void fraction and turbulence correction were used in determining the bubble drag coefficient. The calculated air entrainment and air-water velocity could be adapted using these parameters. With the improved drag model, the Eulerian simulations predicted the location of the inception point, the distributions of air void fraction, velocity distributions, and pressure distributions. The change in the dissolved oxygen (DO) concentration from upstream of the stepped spillways, to downstream, was simulated based on the improved computational fluid dynamics model and the transport equation for DO transferring. The numerical DO concentration coincided with the experimental results. Therefore, the improved CFD model and the numerical methods presented here can provide possible optimization tools for strong air entrainment flows.


Assuntos
Oxigênio/química , Movimentos da Água , Água/química , Simulação por Computador , Modelos Teóricos , Engenharia Sanitária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...