Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(2): e3968, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439590

RESUMO

Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic ß cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Nefropatias Diabéticas , MicroRNAs , Humanos , Piroptose , Cardiomiopatias Diabéticas/genética , Nefropatias Diabéticas/genética , RNA não Traduzido/genética , MicroRNAs/genética , Diabetes Mellitus/genética
2.
Digital Chinese Medicine ; (4): 198-209, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-987641

RESUMO

@#【Objective】  To investigate the correlations between intestinal flora, plasma metabolites, and blood stasis syndrome in coronary heart disease (CHD), and the mechanisms of Yangxin Tongmai Formula (养心通脉方, YXTMF) for blood stasis syndrome in CHD rats. 【Methods】  A total of 18 specific pathogen free (SPF) male Sqrague-Dawley (SD) rats were used to establish CHD rat models with blood stasis syndrome, which were then randomized into model, YXTMF, and atorvastatin calcium (AVT) groups, with six rats in each group, and were intervened through gavage for two weeks. Subsequently, additional six rats that received normal diet were included as normal group. The pathological changes in the CHD rat models were identified by hematoxylin-eosin (HE) staining. The electrocardiogram, hemodynamics, and lipid profiles of the rats were detected as well. The untargeted plasma metabolomics of rats were analyzed by liquid chromotography-tandem mass spectrometry (LC-MS/MS), their ileal mucosal flora by 16S rRNA sequencing, and the correlation between the two results were also analyzed. 【Results】  The whole blood viscosity, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) of rats in the model group increased compared with those in the control group (P < 0.05). In the model group, the proliferation of endothelial cells in the coronary artery of rats was damaged, with quite a few vacuolated pathological changes observed. However, the endothelial lesions in the coronary artery of rats were alleviated in the intervention groups (YXTMF and AVT groups). With the use of  LC-MS/MS, a total of 33 potential endogenous metabolites were identified in plasma, among which 1-methylhistidine, N-acetylhistamine, progesterone, and deoxycorticosterone were expected to be the differential metabolites in CHD rats with blood stasis syndrome. The 16S rRNA sequencing results showed that improved diversity and abundance of intestinal flora were observed in the YXTMF group. The correlation analysis suggested that Hydrogenophaga, Limnohabitans, and Polaromonas, which were highly related to the formation of blood stasis syndrome in CHD patients, were positively correlated with plasma metabolites such as 5-hydroxyindole, N-acetylhistamine, and progesterone (P < 0.01), but were negatively correlated with plasma metabolites such as L-arginine, homoarginine, and Boc-beta-cyano-L-alanine (P < 0.01). After YXTMF intervention, Lactobacillus, Corynebacterium, and Candidatus Nitrososphaera were positively correlated with plasma metabolites such as Boc-β-cyano-L-alanine, stachydrine, and naringenin (P < 0.05), while negatively correlated with 5-hydroxyindole, N-acetylhistamine, and oleoylethanolamide (P < 0.05). 【Conclusion】  YXTMF could alleviate blood stasis syndrome in CHD rats through improving their plasma metabolisms achieved by regulating the intestinal flora.

3.
Zhongguo Zhong Yao Za Zhi ; 39(4): 689-94, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-25204148

RESUMO

Lycii Cortex, a popular herb medicine in traditional Chinese medicine, is used to treat different inflammation-related diseases. The aim of our work is to find the key constituents inhibiting NF-kappaB, a key regulator of inflammation. In the investigations of cell-based in vitro assays of extracts, we found that both ethyl acetate extract and methanol extract of Lycii Cortex inhibited the TNF-alpha-induced activation of NF-kappaB. Through bioassay-guided fractionation, we identified 4 phenolic amides including trans-N-(p-coumaroyl) tyramine (1), trans-N-feruloyltyramine (2), trans-N-caffeoyltyramine (3), and dihydro-N-caffeoyltyramine (4). Four phenolic amides showed differently inhibitory activities on TNF-alpha-induced NF-kappaB activation. Trans-N-caffeoyltyramine (3) was identified as the key component with an IC50 of 18.41 micromol x L(-1). It was suggested that the hydroxyl group at C-3 in trans-N-caffeoyltyramine might be a key binding site and its C-7,8-double bond might play an important role on NF-kappaB inhibitory activities as the link of the conjugation of pi electrons leading to a partial planar conformation. It might be inferred that the biological activity of compound 3 is attributed to the structure of Michael reaction acceptor containing alpha, beta-unsaturated ketones and benzene along with hydroxyl group in o-diphenol.


Assuntos
Medicamentos de Ervas Chinesas/química , Mediadores da Inflamação/antagonistas & inibidores , Lycium/química , NF-kappa B/antagonistas & inibidores , Bioensaio , Linhagem Celular , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Mediadores da Inflamação/imunologia , Estrutura Molecular , NF-kappa B/imunologia
4.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 34(5): 597-601, 2014 May.
Artigo em Chinês | MEDLINE | ID: mdl-24941851

RESUMO

OBJECTIVE: To investigate the effect of Jiangtang Yishen Recipe (JTYSR) on high insulin induced cell proliferation of human glomerular mesangial cells (HMCs) and the expression of insulin receptor substrate 1 (IRS-1) and phosphatidylinositol-3-kinase (PI-3K). METHODS: HMCs were divided into 4 groups, i.e., the negative control group, the high insulin model group, the JTYSR group, and the LY294002 group. The concentration of insulin, JTYSR, and LY294002 was respectively confirmed by pre-experiment. Different culture solution was respectively added for different groups. RPMI1640 culture solution was added for HMCs in the negative control group, while HMCs in the rest 3 groups were cultured by 100 nmol/L insulin for 24 h. Meanwhile, HMCs from the JTYSR group and the LY294002 group were exposed to 125 mg/L JTYSR and 80 micromol/L LY294002 respectively for further 48 h. The proliferation of HMCs was detected by MTT and flow cytometry. The protein expression of IRS-1 and PI-3K in HMC was detected by immunohistochemical assay and Western blot. Results The proliferation of HMCs induced by high insulin could be significantly lowered, and the protein expression of IRS-1 and PI-3K could be down-regulated in the JTYSR group and the LY294002 group (P <0.01). Compared with the LY294002 group, the protein expression of IRS-1 and PI-3K could be slightly down-regulated in the JTYSR group (P <0.05). CONCLUSION: JTYSR could lower high insulin induced proliferation of HMCs, and its mechanism might be related to insulin signaling pathway.


Assuntos
Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Mesangiais/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Cromonas , Humanos , Morfolinas , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...