Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kardiologiia ; 63(5): 53-61, 2023 May 31.
Artigo em Russo | MEDLINE | ID: mdl-37307209

RESUMO

Objective    To examine the effect of Human Amnion-Derived Multipotent Progenitor (AMP) cells and their novel ST266 secretome on neointimal hyperplasia after arterial balloon injury in rats.Material and Methods    Sprague-Dawley male rats were randomly divided into four groups (n=7): Control (PBS) group, systemic ST266 group, systemic AMP group and local AMP implant group. Neointimal hyperplasia was induced in the iliac using a 2F Fogarty embolectomy catheter. After surgery, the rats in the ST266 group were treated with 0.1, 0.5, or 1ml ST266 iv daily. In the systemic AMP groups, a single dose (SD) of 0.5 ×106 or 1×106 AMP cells was injected via the inferior vena cava after arterial balloon injury. In local AMP implant groups, 1×106, 5×106, or 20×106 AMP cells were implanted in 300 µl Matrigel (Mtgl) around the iliac artery after balloon injury. The iliac arteries were removed for histologic analysis at 28 days after the surgery. Re-endothelialization index was measured at 10 days after balloon injury.Results    ST266 (1 ml) group had a lower level of the Neointima / Neointima+Media ratio (N / N+M) 0.3±0.1 vs 0.5±0.1, p=0.004) and luminal stenosis (LS) percentage (18.2±1.9 % vs 39.2±5.8 %, p=0.008) compared with the control group. Single-dose AMP (1×106) decreased LS compared to the control group (19.5±5.4 % vs 39.2±5.8 %, p=0.033). Significant reduction in N / N+M were found between implanted AMPs (20×106) and the control group (0.4±0.1 vs 0.5±0.1, p=0.003) and the Mtgl-only group (0.5±0.1, p=0.007). Implanted AMPs (20×106) decreased the LS compared with both the control (39.2±5.8 %, p=0.001) and Mtgl-only group (37.5±8.6 %, p=0.016). ST266 (1 ml) significantly increased the re-endothelialization index compared to the control (0.4±0.1 vs 0.1±0.1, p=0.002).Conclusion    ST266 and AMP cells reduce neointimal formation and increase the re-endothelialization index after arterial balloon injury. ST266 is potentially a novel, therapeutic agent to prevent vascular restenosis in human.


Assuntos
Hemostáticos , Neointima , Humanos , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Hiperplasia , Constrição Patológica
2.
Front Cardiovasc Med ; 9: 890607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498004

RESUMO

Aortic dissection (AD) is a fatal cardiovascular disease. It is caused by a rupture of the aortic intima or bleeding of the aortic wall that leads to the separation of different aortic wall layers. Patients with untreated AD have a mortality rate of 1-2% per hour after symptom onset. Therefore, effective biomarkers and therapeutic targets are needed to reduce AD-associated mortality. With the development of molecular technology, researchers have begun to explore the pathogenesis of AD at gene and protein levels, and have made some progress, but the pathogenesis of AD remains unclear. Non-coding RNAs, such as microRNAs, lncRNAs, and circRNAs, have been identified as basic regulators of gene expression and are found to play a key role in the pathogenesis of AD. Thus, providing a theoretical basis for developing these non-coding RNAs as clinical biomarkers and new therapeutic targets for AD in the future. Previous studies on the pathogenesis of AD focused on miRNAs, but recently, there have been an increasing number of studies that explore the role of lncRNAs, and circRNAs in AD. This review summarizes the existing knowledge on the roles of various non-coding RNAs in the pathogenesis of AD, discusses their potential role as clinical biomarkers and therapeutic targets, states the limitations of existing evidence, and recommends future avenues of research on the pathogenesis of AD.

3.
Oxid Med Cell Longev ; 2022: 7906091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419169

RESUMO

Oxidative stress (OS) refers to the enhancement of oxidation and the decreased of related antioxidant enzymes activity under pathological conditions, resulting in relatively excess reactive oxygen species (ROS), causing cytotoxicity, which leads to tissue damage and is linked to neurodegenerative diseases, cardiovascular diseases, diabetes, cancers, and many other pathologies. As an important intracellular signaling molecule, ROS can regulate numerous physiological actions, such as vascular reactivity and neuronal function. According to several studies, the uncontrolled production of ROS is related to vascular injury. The growing evidence revealing how traditional risk factors translate into ROS and lead to vasculitis and other vascular diseases. In this review, we sought to mainly discuss the role of ROS and antioxidant mechanisms in vascular-related diseases, especially cardiovascular and common macrovascular diseases.


Assuntos
Antioxidantes , Doenças Vasculares , Antioxidantes/metabolismo , Humanos , Oxirredução , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...