Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37242447

RESUMO

In spite of the increasing number of biologics license applications, the development of covalent inhibitors is still a growing field within drug discovery. The successful approval of some covalent protein kinase inhibitors, such as ibrutinib (BTK covalent inhibitor) and dacomitinib (EGFR covalent inhibitor), and the very recent discovery of covalent inhibitors for viral proteases, such as boceprevir, narlaprevir, and nirmatrelvir, represent a new milestone in covalent drug development. Generally, the formation of covalent bonds that target proteins can offer drugs diverse advantages in terms of target selectivity, drug resistance, and administration concentration. The most important factor for covalent inhibitors is the electrophile (warhead), which dictates selectivity, reactivity, and the type of protein binding (i.e., reversible or irreversible) and can be modified/optimized through rational designs. Furthermore, covalent inhibitors are becoming more and more common in proteolysis, targeting chimeras (PROTACs) for degrading proteins, including those that are currently considered to be 'undruggable'. The aim of this review is to highlight the current state of covalent inhibitor development, including a short historical overview and some examples of applications of PROTAC technologies and treatment of the SARS-CoV-2 virus.

2.
Eur J Med Chem ; 257: 115513, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37253308

RESUMO

The identification of small molecules capable of replacing transcription factors has been a longstanding challenge in the generation of human chemically induced pluripotent stem cells (iPSCs). Recent studies have shown that ectopic expression of OCT4, one of the master pluripotency regulators, compromised the developmental potential of resulting iPSCs, This highlights the importance of finding endogenous OCT4 inducers for the generation of clinical-grade human iPSCs. Through a cell-based high throughput screen, we have discovered several new OCT4-inducing compounds (O4Is). In this work, we prepared metabolically stable analogues, including O4I4, which activate endogenous OCT4 and associated signaling pathways in various cell lines. By combining these with a transcription factor cocktail consisting of SOX2, KLF4, MYC, and LIN28 (referred to as "CSKML") we achieved to reprogram human fibroblasts into a stable and authentic pluripotent state without the need for exogenous OCT4. In Caenorhabditis elegans and Drosophila, O4I4 extends lifespan, suggesting the potential application of OCT4-inducing compounds in regenerative medicine and rejuvenation therapy.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Fator 4 Semelhante a Kruppel , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento , Diferenciação Celular
3.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38256875

RESUMO

In the rapidly evolving landscape of genetic engineering, the advent of CRISPR-Cas technologies has catalyzed a paradigm shift, empowering scientists to manipulate the genetic code with unprecedented accuracy and efficiency. Despite the remarkable capabilities inherent to CRISPR-Cas systems, recent advancements have witnessed the integration of small molecules to augment their functionality, introducing new dimensions to the precision and versatility of gene editing applications. This review delves into the synergy between CRISPR-Cas technologies based specifically on Cas9 and small-molecule drugs, elucidating the pivotal role of chemicals in optimizing target specificity and editing efficiency. By examining a diverse array of applications, ranging from therapeutic interventions to agricultural advancements, we explore how the judicious use of chemicals enhances the precision of CRISPR-Cas9-mediated genetic modifications. In this review, we emphasize the significance of small-molecule drugs in fine-tuning the CRISPR-Cas9 machinery, which allows researchers to exert meticulous control over the editing process. We delve into the mechanisms through which these chemicals bolster target specificity, mitigate off-target effects, and contribute to the overall refinement of gene editing outcomes. Additionally, we discuss the potential of chemical integration in expanding the scope of CRISPR-Cas9 technologies, enabling tailored solutions for diverse genetic manipulation challenges. As CRISPR-Cas9 technologies continue to evolve, the integration of small-molecule drugs emerges as a crucial avenue for advancing the precision and applicability of gene editing techniques. This review not only synthesizes current knowledge but also highlights future prospects, paving the way for a deeper understanding of the synergistic interplay between CRISPR-Cas9 systems and chemical modulators in the pursuit of more controlled and efficient genetic modifications.

4.
J Cell Biol ; 221(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860252

RESUMO

Transforming growth factor ß (TGF-ß) signaling plays a fundamental role in metazoan development and tissue homeostasis. However, the molecular mechanisms concerning the ubiquitin-related dynamic regulation of TGF-ß signaling are not thoroughly understood. Using a combination of proteomics and an siRNA screen, we identify pVHL as an E3 ligase for SMAD3 ubiquitination. We show that pVHL directly interacts with conserved lysine and proline residues in the MH2 domain of SMAD3, triggering degradation. As a result, the level of pVHL expression negatively correlates with the expression and activity of SMAD3 in cells, Drosophila wing, and patient tissues. In Drosophila, loss of pVHL leads to the up-regulation of TGF-ß targets visible in a downward wing blade phenotype, which is rescued by inhibition of SMAD activity. Drosophila pVHL expression exhibited ectopic veinlets and reduced wing growth in a similar manner as upon loss of TGF-ß/SMAD signaling. Thus, our study demonstrates a conserved role of pVHL in the regulation of TGF-ß/SMAD3 signaling in human cells and Drosophila wing development.


Assuntos
Proteólise , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Drosophila melanogaster/metabolismo , Células HCT116 , Células HeLa , Humanos , Ligação Proteica , Domínios Proteicos , Proteína Smad2/metabolismo , Proteína Smad3/química , Ubiquitina-Proteína Ligases/metabolismo
5.
JACS Au ; 1(6): 777-785, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34467332

RESUMO

The discovery of clustered regularly interspaced short palindromic repeats and their associated proteins (Cas) has revolutionized the field of genome and epigenome editing. A number of new methods have been developed to precisely control the function and activity of Cas proteins, including fusion proteins and small-molecule modulators. Proteolysis-targeting chimeras (PROTACs) represent a new concept using the ubiquitin-proteasome system to degrade a protein of interest, highlighting the significance of chemically induced protein-E3 ligase interaction in drug discovery. Here, we engineered Cas proteins (Cas9, dCas9, Cas12, and Cas13) by inserting a Phe-Cys-Pro-Phe (FCPF) amino acid sequence (known as the π-clamp system) and demonstrate that the modified CasFCPF proteins can be (1) labeled in live cells by perfluoroaromatics carrying the fluorescein or (2) degraded by a perfluoroaromatics-functionalized PROTAC (PROTAC-FCPF). A proteome-wide analysis of PROTAC-FCPF-mediated Cas9FCPF protein degradation revealed a high target specificity, suggesting a wide range of applications of perfluoroaromatics-induced proximity in the regulation of stability, activity, and functionality of any FCPF-tagging protein.

6.
Cell Chem Biol ; 28(11): 1616-1627.e8, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34048672

RESUMO

The proteolysis-targeting chimeras (PROTACs) are a new technology to degrade target proteins. However, their clinical application is limited currently by lack of chemical binders to target proteins. For instance, it is still unknown whether splicing factor 3B subunit 1 (SF3B1) is targetable by PROTACs. We recently identified a 2-aminothiazole derivative (herein O4I2) as a promoter in the generation of human pluripotent stem cells. In this work, proteomic analysis on the biotinylated O4I2 revealed that O4I2 targeted SF3B1 and positively regulated RNA splicing. Fusing thalidomide-the ligand of the cereblon ubiquitin ligase-to O4I2 led to a new PROTAC-O4I2, which selectively degraded SF3B1 and induced cellular apoptosis in a CRBN-dependent manner. In a Drosophila intestinal tumor model, PROTAC-O4I2 increased survival by interference with the maintenance and proliferation of stem cell. Thus, our finding demonstrates that SF3B1 is PROTACable by utilizing noninhibitory chemicals, which expands the list of PROTAC target proteins.


Assuntos
Fosfoproteínas/antagonistas & inibidores , Fatores de Processamento de RNA/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Drosophila melanogaster , Humanos , Fosfoproteínas/metabolismo , Proteólise/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , Fatores de Processamento de RNA/metabolismo , Tiazóis/síntese química , Tiazóis/química
7.
Front Oncol ; 11: 653061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996574

RESUMO

Pancreatic cancer is a common malignant tumor with a high incidence and mortality rate. The prognosis of patients with pancreatic cancer is considerably poor due to the lack of effective treatment in clinically. Despite numerous studies have revealed that baicalein, a natural product, is responsible for suppressing multiple cancer cells proliferation, motility and invasion. The mechanism by which baicalein restraining pancreatic cancer progression remains unclear. In this study, we firstly verified that baicalein plays a critical role in inhibiting pancreatic tumorigenesis in vitro and in vivo. Then we analyzed the alteration of microRNAs (miRNAs) expression levels in Panc-1 cells incubated with DMSO, 50 and 100 µM baicalein by High-Throughput sequencing. Intriguingly, we observed that 20 and 39 miRNAs were accordingly up- and down-regulated through comparing Panc-1 cells exposed to 100 µM baicalein with the control group. Quantitative PCR analysis confirmed that miR-139-3p was the most up-regulated miRNA after baicalein treatment, while miR-196b-5p was the most down-regulated miRNA. Further studies showed that miR-139-3p induced, miR-196b-5p inhibited the apoptosis of Panc-1 cells via targeting NOB1 and ING5 respectively. In conclusion, we demonstrated that baicalein is a potent inhibitor against pancreatic cancer by modulating the expression of miR-139-3p or miR-196b-5p.

8.
Mol Ther ; 28(12): 2635-2641, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32882179

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system plays an important role in prokaryotic adaptive immunity. Due to its capacity for sequence-specific gene editing, CRISPR-Cas9 has become one of the most important tools widely used for genome editing in molecular biotechnology. However, its clinical application is currently limited by unwanted mutations at off-target sites. Various strategies have been developed for precise control of Cas9 in order to reduce these off-target effects, including chemical-based approaches. From a chemical screening, I observed that valproic acid (VPA) binds to and destabilizes Streptococcus pyogenes Cas9 (SpyCas9) protein in vitro, as well as in cells, while within its therapeutical concentration range under conditions of hyperthermia as demonstrated. Conditions were generated either by an external heat bag or in combination with the photothermal therapeutic agent indocyanine green activated by a near-infrared laser. Use of other histone deacetylase inhibitors failed, suggesting a histone deacetylase inhibition-independent function of VPA. Thus, this finding provides an uncomplicated thermotherapeutical approach for timely regulation of the activity of the CRISPR-Cas9 system at desired locations.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Inibidores Enzimáticos/metabolismo , Temperatura Alta , Streptococcus pyogenes/enzimologia , Ácido Valproico/metabolismo , Ácido Valproico/farmacologia , Sistemas CRISPR-Cas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Edição de Genes , Verde de Indocianina , Mutação , Desnaturação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos
9.
J Therm Biol ; 92: 102679, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32888575

RESUMO

Temperature is an important abiotic environmental factor, and is responsible for various kinds of behavioral and physiological changes in living organisms. Induced heat shock is associated with feeding behaviour, reproduction and reactive oxygen species (ROS) generation that causes oxidative damage. In this experiment, we examined the lethal and sublethal effects of heat shock on reproduction, feeding behaviour and antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD) and peroxidases (POD) in P. solenopsis. Results showed that males were highly susceptible to heat shock treatments than females, as LTemp50 values were 43.8 °C for males and 45.11 °C for females. Heat shock events non-significantly affected the fecundity in female only treated adults and significantly affected the both sexes heat treated adults, it increased the xylem feeding duration, percentage of xylem feeding adults and reduce the phloem feeding duration and percentage of phloem feeding adults. Similarly it alter the antioxidant enzymes activities, an increase of CAT, SOD and POD activities were noticed in response to highest intensity of heat shock while a reduction of CAT and SOD activity were noticed in response to lowest intensity of heat shock compared to control (30 °C). These results suggest that heat shock may result in loss of body water and induce oxidative stress in P. solenopsis. However, antioxidant enzymes play a significant role in overcoming the oxidative damage.


Assuntos
Hemípteros/fisiologia , Animais , Feminino , Fertilidade , Resposta ao Choque Térmico , Hemípteros/anatomia & histologia , Hemípteros/enzimologia , Masculino , Oviposição , Estresse Oxidativo
10.
Ann Transl Med ; 8(5): 231, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32309378

RESUMO

BACKGROUND: Yin Zhi Huang (YZH) is a formula composed of Artemisia scoparia, Gardeniae fructus, Scutellaria baicalensis Georgi, and Lonicerae Japonicae Flos. Most of the components are eaten as food in Asia. Here, we evaluated the role of YZH on a high-fat diet (HFD)-induced obesity and hepatic steatosis. METHODS: Male C57BL/6J mice were fed with normal-chow diet, HFD, and HFD with low- or high-dose YZH for 16 weeks. Body weight gain, adipose mass, and plasma lipids levels were measured to evaluate the effect of YZH on obesity. Liver weight and staining methods on liver tissues were used to determine hepatic steatosis. The expression of involved genes and proteins were screened with qRT-PCR and immunoblotting, respectively. RESULTS: The results showed that YZH significantly reduced body weight gain, adipose mass, and the size of adipocytes, while did not affect food intake in HFD-fed mice. H&E staining, bodipy staining, and oil red O staining displayed that YZH alleviates hepatic lipid accumulation. It also effectively restored elevated plasma levels of triglycerides (TG), total cholesterol (TC), alanine aminotransferase, and aspartate aminotransferase in HFD-fed mice. Mechanistically, these effects of YZH have associated with a decrease of AMPK/SREBP-1 pathway-mediated de novo lipogenesis and an increase of AMPK/ACC/CPT1A pathway-mediated mitochondrial fatty acid ß oxidation. CONCLUSIONS: YZH supplementation ameliorated diet-induced obesity and hepatic steatosis by decreasing AMPK/SREBP-1 pathway-mediated de novo lipogenesis and increasing AMPK/ACC/CPT1A pathway-mediated mitochondrial fatty acid ß oxidation.

11.
Environ Entomol ; 49(3): 553-560, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32198523

RESUMO

Effects of temperature on the development, survival, reproduction, longevity and sex ratio of the cotton mealybug, Phenacoccus solenopsis Tinsley, was assessed at five constant temperatures ranging from 20 to 35°C and five fluctuating temperatures ranging from 15 to 40°C under laboratory conditions. Results showed that nymphal development duration, preoviposition period, oviposition period, fecundity, and adult longevity were reduced significantly with increasing temperature until 30°C, but developmental duration of third female nymphal instar and female adult longevity was longer at 35°C than 30°C, and no males could emerge from pupae at the constant temperature 35°C. Fluctuating temperature, in general, significantly accelerated the nymphal developmental duration, prolonged preoviposition period, shortened oviposition period, reduced fecundity, lowered the survival rate of nymphs, and decreased adult longevity of males and females compared to their mean corresponding constant temperature. Overall, it is suggested that one should be prudent when applying the obtained results under constant and fluctuating temperatures under laboratory conditions.


Assuntos
Hemípteros , Animais , Feminino , Masculino , Ninfa , Reprodução , Razão de Masculinidade , Temperatura
12.
Commun Biol ; 3: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31909202

RESUMO

Gold compounds have a long history of use as immunosuppressants, but their precise mechanism of action is not completely understood. Using our recently developed liver-on-a-chip platform we now show that gold compounds containing planar N-heterocyclic carbene (NHC) ligands are potent ligands for the aryl hydrocarbon receptor (AHR). Further studies showed that the lead compound (MC3) activates TGFß1 signaling and suppresses CD4+ T-cell activation in vitro, in human and mouse T cells. Conversely, genetic knockdown or chemical inhibition of AHR activity or of TGFß1-SMAD-mediated signaling offsets the MC3-mediated immunosuppression. In scurfy mice, a mouse model of human immunodysregulation polyendocrinopathy enteropathy X-linked syndrome, MC3 treatment reduced autoimmune phenotypes and extended lifespan from 24 to 58 days. Our findings suggest that the immunosuppressive activity of gold compounds can be improved by introducing planar NHC ligands to activate the AHR-associated immunosuppressive pathway, thus expanding their potential clinical application for autoimmune diseases.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Terapia de Imunossupressão/métodos , Compostos Organoáuricos/imunologia , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
13.
Food Chem X ; 1: 100005, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31432005

RESUMO

Caffeine and related purine alkaloids are common ingredients of many stimulating drinks. Studies have shown that lower concentrations of caffeine have a protective role in aging-related disorders. However, the associated mode of action of caffeine and its related methylxanthines is still not clear. In this study, we demonstrated that caffeine and theophylline promote longevity in Caenorhabditis elegans. Lifespan studies with the wild type, DAF-16 and SKN-1 mutant strains indicated that the methylxanthines-mediated lifespan extension in C. elegans was independent of DAF-16/FOXO and SKN-1. All the tested methylxanthines could protect C. elegans against acute oxidative stress. At early stages of life, an increase of ROS (reactive oxygen species) induced the translocation of DAF-16 and SKN-1, resulting in upregulation of several antioxidant genes, for example, sod-3p::GFP, gst-4p::GFP, gcs-1p::GFP; and downregulation of hsp-16.2p::GFP. RT-PCR corroborates the upregulation of gst-4 and skn-1 genes. The expression of DAF-16 decreased although its nuclear translocation was induced.

14.
Front Oncol ; 9: 438, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231607

RESUMO

The tumor suppressor p53 has a diverse mutational profile in human malignancies, which is known to influence the potency of various chemotherapeutics, such as platins and anti-metabolites. However, the impact of the mutations in the TP53 gene (coding for p53) on the anti-cancer efficacy of gold complexes remains incompletely understood. We therefore investigated the anti-tumor properties of a gold(I) N-heterocyclic carbene (NHC) complex-termed MC3-in human colorectal cancer (CRC) cell lines encompassing three different p53 variations: HCT116 wild-type (WT), HCT116 p53-/-, and HT-29 (mutant; R273H). MC3 treatment induced intracellular reactive oxygen species (ROS) levels, and p21 expression, leading to cell cycle arrest in all cell lines, regardless of their p53 status. The pro-apoptotic response, however, was found to occur in a p53-dependent manner, with WT p53 harboring cells showing the highest responsiveness. Additionally, p73, which was speculated to substitute p53 in p53-deficient cells, was found to be markedly reduced with MC3 treatment in all the cell lines and knocking down its levels did not impact MC3's anti-tumor effects in HCT116 p53-/- cells. Collectively, our results suggest that this small molecule has anti-cancer properties in the context of deficient or mutant p53 and may therefore have chemotherapeutic potential for clinical application.

15.
Sci Rep ; 9(1): 4616, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874583

RESUMO

Organ-on-chip platforms provide models that allow the representation of human physiological processes in cell-based miniaturized systems. Potential pre-clinical applications include drug testing and toxicity studies. Here we describe the use of a multi-compartment micro-fluidic chip to recapitulate hepatic vitamin D metabolism (vitamin D to 25-hydroxyvitamin D) and renal bio-activation (25-hydroxyvitamin D to 1,25-dihydroxyvitamin D) in humans. In contrast to cultivation in conventional tissue culture settings, on-chip cultivation of HepG2 and RPTEC cells in interconnected chambers, used to mimic the liver and kidneys, respectively, resulted in the enhanced expression of vitamin D metabolizing enzymes (CYP2R1, CYP27B1 and CYP24A1). Pump-driven flow of vitamin D3-containing medium through the microfluidic chip produced eluate containing vitamin D3 metabolites. LC-MSMS showed a strong accumulation of 25-hydroxyvitamin D. The chip eluate induced the expression of differentiation markers in HL-60 (acute myeloid leukemia) cells, assessed by qPCR and FACS analysis, in a manner similar to treatment with reference standards indicating the presence of fully activated 1,25 dihydroxyvitamin D, although the latter was not detected in the eluate by LC-MSMS. Interestingly, 25-hydroxyvitamin D by itself led to weak activation of HL-60 cells suggesting that 25-hydroxyvitamin D is also an active metabolite. Our experiments demonstrate that complex metabolic interactions can be reconstructed outside the human body using dedicated organ-on-chip platforms. We therefore propose that such systems may be used to mimic the in vivo metabolism of various micronutrients and xenobiotics.


Assuntos
Colecalciferol/metabolismo , Rim/metabolismo , Fígado/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Ativação Metabólica/fisiologia , Animais , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Células HL-60 , Células Hep G2 , Humanos , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Vitamina D/análogos & derivados , Vitamina D/metabolismo , Vitaminas/metabolismo
16.
J Econ Entomol ; 112(3): 1314-1321, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30753639

RESUMO

Acetamiprid and imidacloprid are two important neonicotinoid insecticides that are widely utilized under field conditions for the management of sucking insect pests, including the solenopsis mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Although some information is available regarding their lethal effects, nothing is currently known about the sublethal effects of these insecticides. We, therefore, performed a series of experiments to test the lethal and sublethal effects of these chemicals on oviposition duration and fecundity. We also assessed sublethal effects on feeding behavior using the electrical penetration graph (EPG) technique. The results of this study reveal that acetamiprid toxicity is higher than imidacloprid and that both insecticides have negative effects on the oviposition, fecundity, and feeding behavior of P. solenopsis when applied at sublethal dosages. These chemicals also significantly reduce oviposition duration and fecundity and significantly prolong nonprobing duration, increase penetration problems, and reduce phloem and xylem feeding activities when compared with adults exposed to just water. No significant differences were detected in all waveform durations and events when adults previously exposed to foliage treated with each of these two insecticides were compared. The results of this study, therefore, suggest that both insecticides are capable of protecting crops from mealybug damage by not only killing these pests directly but also reducing their fecundity and inhibiting feeding behaviors when applied at sublethal dosages.


Assuntos
Hemípteros , Inseticidas , Solanum lycopersicum , Animais , Feminino , Neonicotinoides , Oviposição
17.
iScience ; 12: 168-181, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30685712

RESUMO

Pioneering human induced pluripotent stem cell (iPSC)-based pre-clinical studies have raised safety concerns and pinpointed the need for safer and more efficient approaches to generate and maintain patient-specific iPSCs. One approach is searching for compounds that influence pluripotent stem cell reprogramming using functional screens of known drugs. Our high-throughput screening of drug-like hits showed that imidazopyridines-analogs of zolpidem, a sedative-hypnotic drug-are able to improve reprogramming efficiency and facilitate reprogramming of resistant human primary fibroblasts. The lead compound (O4I3) showed a remarkable OCT4 induction, which at least in part is due to the inhibition of H3K4 demethylase (KDM5, also known as JARID1). Experiments demonstrated that KDM5A, but not its homolog KDM5B, serves as a reprogramming barrier by interfering with the enrichment of H3K4Me3 at the OCT4 promoter. Thus our results introduce a new class of KDM5 chemical inhibitors and provide further insight into the pluripotency-related properties of KDM5 family members.

18.
Int J Mol Sci ; 19(12)2018 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-30544880

RESUMO

The p38 MAPK pathway is known to influence the anti-tumor effects of several chemotherapeutics, including that of organometallic drugs. Previous studies have demonstrated the important role of p38 both as a regulator and a sensor of cellular reactive oxygen species (ROS) levels. Investigating the anti-cancer properties of novel 1,8-naphthalimide derivatives containing Rh(I) and Ru(II) N-heterocyclic carbene (NHC) ligands, we observed a profound induction of ROS by the complexes, which is most likely generated from mitochondria (mtROS). Further analyses revealed a rapid and consistent activation of p38 signaling by the naphthalimide-NHC conjugates, with the Ru(II) analogue-termed MC6-showing the strongest effect. In view of this, genetic as well as pharmacological inhibition of p38α, attenuated the anti-proliferative and pro-apoptotic effects of MC6 in HCT116 colon cancer cells, highlighting the involvement of this signaling molecule in the compound's toxicity. Furthermore, the influence of MC6 on p38 signaling appeared to be dependent on ROS levels as treatment with general- and mitochondria-targeted anti-oxidants abrogated p38 activation in response to MC6 as well as the molecule's cytotoxic- and apoptogenic response in HCT116 cells. Altogether, our results provide new insight into the molecular mechanisms of naphthalimide-metal NHC analogues via the ROS-induced activation of p38 MAPK, which may have therapeutic interest for the treatment of various cancer types.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/patologia , Compostos Heterocíclicos/farmacologia , Metano/análogos & derivados , Naftalimidas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rutênio/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Compostos Heterocíclicos/química , Humanos , Ligantes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metano/química , Metano/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Naftalimidas/química , Rutênio/química , Transdução de Sinais/efeitos dos fármacos
19.
Eur J Med Chem ; 156: 148-161, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30006161

RESUMO

Fluorescent 4-ethylthio-1,8-naphthalimides containing rhodium(I) N-heterocyclic carbene (NHC) and ruthenium (II) NHC fragments were synthesised and evaluated for their antiproliferative effects, cellular uptake and DNA-binding activity. Both types of organometallics triggered ligand dependent efficient cytotoxic effects against tumor cells with the rhodium(I) NHC derivatives causing stronger effects than the ruthenium (II) NHC analogues. Antiproliferative effects could also be observed against several pathogenic Gram-positive bacterial strains, whereas the growth of Gram-negative bacteria was not substantially affected. Cellular uptake was confirmed by atomic absorption spectroscopy as well as by fluorescence microscopy indicating a general ligand dependent accumulation in the cells. An in-depth study on the interaction with DNA confirmed insertion of the naphthalimide moiety between the planar bases of B-DNA via an intercalation mechanism, as well as its stacking on top of the quartets of G-quadruplex structures. Furthermore, additional coordinative binding of the organometallic complexes to the model DNA base 9-ethylguanine could be detected. The studied compounds thus represent promising bioorganometallics featuring strong pharmacological effects in combination with excellent cellular imaging properties.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Corantes Fluorescentes/química , Substâncias Intercalantes/química , Naftalimidas/química , Ródio/química , Rutênio/química , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/farmacologia , Quadruplex G/efeitos dos fármacos , Humanos , Substâncias Intercalantes/farmacologia , Ligantes , Naftalimidas/farmacologia , Neoplasias/tratamento farmacológico , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Ródio/farmacologia , Rutênio/farmacologia
20.
Sci Rep ; 8(1): 6119, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651101

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...