Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 846795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368658

RESUMO

In plants, chloride channels (CLC) are involved in a series of specific functions, such as regulation of nutrient transport and stress tolerance. Members of the wheat Triticum aestivum L. CLC (TaCLC) gene family have been proposed to encode anion channels/transporters that may be related to nitrogen transportation. To better understand their roles, TaCLC family was screened and 23 TaCLC gene sequences were identified using a Hidden Markov Model in conjunction with wheat genome database. Gene structure, chromosome location, conserved motif, and expression pattern of the resulting family members were then analyzed. Phylogenetic analysis showed that the TaCLC family can be divided into two subclasses (I and II) and seven clusters (-a, -c1, -c2, -e, -f1, -f2, and -g2). Using a wheat RNA-seq database, the expression pattern of TaCLC family members was determined to be an inducible expression type. In addition, seven genes from seven different clusters were selected for quantitative real-time PCR (qRT-PCR) analysis under low nitrogen stress or salt stress conditions, respectively. The results indicated that the gene expression levels of this family were up-regulated under low nitrogen stress and salt stress, except the genes of TaCLC-c2 cluster which were from subfamily -c. The yeast complementary experiments illustrated that TaCLC-a-6AS-1, TaCLC-c1-3AS, and TaCLC-e-3AL all had anion transport functions for NO3 - or Cl-, and compensated the hypersensitivity of yeast GEF1 mutant strain YJR040w (Δgef1) in restoring anion-sensitive phenotype. This study establishes a theoretical foundation for further functional characterization of TaCLC genes and provides an initial reference for better understanding nitrate nitrogen transportation in wheat.

2.
Front Plant Sci ; 13: 1103235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618640

RESUMO

Potassium (K) is an essential nutrient for plant physiological processes. Members of the HAK/KUP/KT gene family act as potassium transporters, and the family plays an important role in potassium uptake and utilization in plants. In this study, the TaHAK13 gene was cloned from wheat and its function characterized. Real-time quantitative PCR (RT-qPCR) revealed that TaHAK13 expression was induced by environmental stress and up-regulated under drought (PEG6000), low potassium (LK), and salt (NaCl) stress. GUS staining indicated that TaHAK13 was mainly expressed in the leaf veins, stems, and root tips in Arabidopsis thaliana, and expression varied with developmental stage. TaHAK13 mediated K+ absorption when heterologously expressed in yeast CY162 strains, and its activity was slightly stronger than that of a TaHAK1 positive control. Subcellular localization analysis illustrated that TaHAK13 was located to the plasma membrane. When c(K+) ≤0.01 mM, the root length and fresh weight of TaHAK13 transgenic lines (athak5/TaHAK13, Col/TaHAK13) were significantly higher than those of non-transgenic lines (athak5, Col). Non-invasive micro-test technology (NMT) indicated that the net K influx of the transgenic lines was also higher than that of the non-transgenic lines. This suggests that TaHAK13 promotes K+ absorption, especially in low potassium media. Membrane-based yeast two-hybrid (MbY2H) and luciferase complementation assays (LCA) showed that TaHAK13 interacted with TaNPF5.10 and TaNPF6.3. Our findings have helped to clarify the biological functions of TaHAK13 and established a theoretical framework to dissect its function in wheat.

3.
BMC Plant Biol ; 18(1): 374, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587132

RESUMO

BACKGROUND: The precise identification of Winterness/Springness (growth habit) for bread wheat, which is determined by genes involved in vernalization and photoperiod, will contribute to the effective utilization of bread wheat varieties. Here, 198 varieties from the Yellow and Huai wheat production region (YHW) in China were collected to identify their vernalization (Vrn-1) and photoperiod (Ppd-1) gene composition via a series of functional markers and their association with vernalization and photoperiod requirements at three locations during two years of experiments. The growth habits were measured during the spring sowing season. RESULTS: The results showed that the semi-winter varieties (grades1-4) were most prevalent in the population. The relative effects of single Vrn alleles on the growth period, such as heading date (HD) and/or flowering date (FD), were as follows: Vrn-B1b > Vrn-B1a > Vrn-D1b > Vrn-D1a > vrn-D1 = vrn-B1. The interactive effects of Vrn-B1 and Vrn-D1 on HD and FD were identical to those of Vrn-B1b. Approximately 35.3% of the cultivars carried Ppd-B1a (photoperiod-insensitive) and exhibited the earliest HD and FD. The Ppd-D1a-insensitive allele (Hapl II) was carried by just 0.5% of the varieties; however, the other two sensitive alleles were present at a higher frequency, and their effects were slightly weaker than those of Ppd-B1a. In addition, strong interactive effects between Ppd-B1 and Ppd-D1 were detected. In terms of mean values among various genotypes, the effects followed the order of Vrn-1 > Ppd-1. CONCLUSIONS: According to the results of ANOVA and least significant range (LSR) tests, we can conclude that Vrn-1 rather than Ppd-1 played a major role in controlling vernalization and photoperiod responses in this region. This research will be helpful for precisely characterizing and evaluating the HD, FD and even growth habit of varieties in the YHW at molecular levels.


Assuntos
Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Triticum/genética , Produção Agrícola , Flores/genética , Frequência do Gene/genética , Genes de Plantas/fisiologia , Estudos de Associação Genética , Marcadores Genéticos/genética , Fotoperíodo , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
4.
Int J Mol Sci ; 19(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544665

RESUMO

In plants, the HAK (high-affinity K⁺)/KUP (K⁺ uptake)/KT (K⁺ transporter) family represents a large group of potassium transporters that play important roles in plant growth and environmental adaptation. Although HAK/KUP/KT genes have been extensively investigated in many plant species, they remain uncharacterized in wheat, especially those involved in the response to environmental stresses. In this study, 56 wheat HAK/KUP/KT (hereafter called TaHAKs) genes were identified by a genome-wide search using recently released wheat genomic data. Phylogenetic analysis grouped these genes into four clusters (Ι, II, III, IV), containing 22, 19, 7 and 8 genes, respectively. Chromosomal distribution, gene structure, and conserved motif analyses of the 56 TaHAK genes were subsequently performed. In silico RNA-seq data analysis revealed that TaHAKs from clusters II and III are constitutively expressed in various wheat tissues, while most genes from clusters I and IV have very low expression levels in the examined tissues at different developmental stages. qRT-PCR analysis showed that expression levels of TaHAK genes in wheat seedlings were significantly up- or downregulated when seedlings were exposed to K⁺ deficiency, high salinity, or dehydration. Furthermore, we functionally characterized TaHAK1b-2BL and showed that it facilitates K⁺ transport in yeast. Collectively, these results provide valuable information for further functional studies of TaHAKs, and contribute to a better understanding of the molecular basis of wheat development and stress tolerance.


Assuntos
Proteínas de Transporte de Cátions/genética , Genoma de Planta , Família Multigênica , Proteínas de Plantas/genética , Triticum/genética , Proteínas de Transporte de Cátions/metabolismo , Cromossomos de Plantas/genética , Sequência Conservada/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Motivos de Nucleotídeos/genética , Filogenia , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Triticum/efeitos dos fármacos , Triticum/fisiologia
5.
Front Plant Sci ; 9: 1426, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323824

RESUMO

Drought is one of the major environmental stresses limiting crop growth and production. MYB family transcription factors play crucial roles in response to abiotic stresses. Previous studies found that TaMYB31 is transcriptionally induced by drought stress. However, the biological functions of TaMYB31 in drought stress responses remained unknown. In this study, three TaMYB31 homoeologous genes from hexaploid wheat, designated TaMYB31-A, TaMYB31-B, and TaMYB31-D, were cloned and characterized. Expression analysis showed that TaMYB31 genes have different tissue expression patterns, and TaMYB31-B has relatively high expression levels in most tested tissues. All the three homoeologs were up-regulated by polyethylene glycol (PEG) 6000 and abscisic acid (ABA) treatments. Subcellular localization analyses revealed that TaMYB31 is localized to the nucleus. Ectopic expression of the TaMYB31-B gene in Arabidopsis affected plants growth and enhanced drought tolerance. In addition, seed germination and seedling root growth of TaMYB31-B transgenic plants were more sensitive to exogenous ABA treatment compared to wild type control. RNA-seq analysis indicated that TaMYB31 functions through up-regulation of wax biosynthesis genes and drought-responsive genes. These results provide evidence that TaMYB31 acts as a positive regulator of drought resistance, and justify its potential application in genetic modification of crop drought tolerance.

6.
Front Plant Sci ; 8: 1212, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798752

RESUMO

CIMMYT wheat (Triticum aestivum L.) lines Francolin#1 and Quaiu#3 displayed effective and stable adult plant resistance (APR) to Chinese Blumeria graminis f. sp. tritici isolates in the field. To elucidate their genetic basis of resistance, two recombinant inbred line (RIL) populations of their crosses with Avocet, the susceptible parent, were phenotyped in Zhengzhou and Shangqiu in the 2014-2015 and 2015-2016 cropping seasons. These populations were also genotyped with SSR (simple sequence repeat markers) and DArT (diversity arrays technology) markers. Two common significant quantitative trait loci (QTL) on wheat chromosomes 1BL and 4BL were detected in both populations by joint and individual inclusive composite interval mapping, explaining 20.3-28.7% and 9.6-15.9% of the phenotypic variance in Avocet × Francolin#1 and 4.8-11.5% and 10.8-18.9% in Avocet × Quaiu#3, respectively. Additional QTL were mapped on chromosomes 1DL and 5BL in Avocet × Francolin#1 and on 2DL and 6BS in Avocet × Quaiu#3. Among these, QPm.heau-1DL is probably a novel APR gene contributing 6.1-8.5% of total phenotypic variance. The QTL on 1BL corresponds to the pleiotropic multi-pathogen resistance gene Yr29/Lr46/Pm39, whereas the QTL on 2DL maps to a similar region where stripe rust resistance gene Yr54 is located. The QTL identified can potentially be used for the improvement of powdery mildew and rust resistance in wheat breeding.

7.
Arch Biochem Biophys ; 473(1): 8-15, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18316035

RESUMO

The functional analysis of the sodium exchanger SOS1 from wheat, TaSOS1, was undertaken using Saccharomyces cerevisiae as a heterologous expression system. The TaSOS1 protein, with significant sequence homology to SOS1 sodium exchangers from Arabidopsis and rice, is abundant in roots and leaves, and is induced by salt treatment. TaSOS1 suppressed the salt sensitivity of a yeast strain lacking the major Na+ efflux systems by decreasing the cellular Na+ content while increasing K+ content. Na+/H+ exchange activity of purified plasma membrane from yeast cells expressing TaSOS1 was higher than controls transformed with empty vector. These results demonstrate that TaSOS1 contributes to plasma membrane Na+/H+ exchange.


Assuntos
Saccharomyces cerevisiae/genética , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/fisiologia , Triticum/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/fisiologia , Cloreto de Sódio/toxicidade , Trocadores de Sódio-Hidrogênio/biossíntese , Trocadores de Sódio-Hidrogênio/genética , Triticum/efeitos dos fármacos , Triticum/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-17287568

RESUMO

'Bright Yellow 2' ('BY-2') tobacco (Nicotiana tabacum L.) suspension cells could not proliferate even with proper 2, 4-D concentration (0.6 mg/L) in the medium, when the initial cell density is low. However, the cells could divide and grow normally if conditioned medium (CM) was added to the medium, and the rate of proliferation of cells was proportional to the quantities of CM supplied. The same results were obtained, when the CM was replaced by synthesized phytosulfokine-alpha (PSK-alpha), a sulfated pentapeptide, PSK-alpha was found in CM of 'BY-2' cells by MS identification. From the significant linear relationship between rate of cell proliferation (measured by OD600 value) and concentrations (0.05 nmol/L-10 micromol/L) of PSK-alpha, it can be seen that the 'BY-2' suspended cells are the ideal plant material for bioassay of PSK-alpha. This result suggests that the PSK-alpha might be involved in promoting the proliferation of 'BY-2' suspension cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Nicotiana/citologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/farmacologia , Células Cultivadas , Hormônios Peptídicos , Proteínas de Plantas/síntese química , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA