Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 919: 170633, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340865

RESUMO

Biogenic and anthropogenic organic vapors are crucial precursors of ozone and secondary organic aerosol (SOA) in the atmosphere. Here we conducted real-time measurements of gaseous organic compounds using a Vocus proton-transfer-reaction mass spectrometer (Vocus PTR-MS) at the Shanghuang mountain site (1128 m a.s.l.) in southeastern China during November 2022. Our results revealed a substantial impact of mixed biogenic and anthropogenic compounds at the mountain site, with oxygenated volatile organic compounds (OVOCs) comprising 74 % of the organic vapors. Two distinct periods, characterized by sunny days (P1) and persistent cloud events (P2), were observed. P1 exhibited higher concentrations of biogenic-related emissions compared to P2. For instance, isoprene, monoterpenes, and sesquiterpenes during P1 were 2.4-2.9 times higher than those during P2. OVOCs such as acetaldehyde, MVK + MACR, acetone, and MEK also showed higher concentrations during P1, indicating a dominant source from the photochemical oxidation of biogenic VOCs. Anthropogenic-related VOCs like benzene and toluene had higher concentrations during P2, displaying different diurnal cycles compared to P1. Our analysis identified four biogenic-related factors dominated by isoprene and sesquiterpene oxidation products, and two anthropogenic-related factors. During P1, biogenic sources contributed approximately 80 % to total organic compounds, while during P2, anthropogenic sources, particularly the aromatic-related factor, increased from 16 % to 35 %. Furthermore, a unique factor characterized by C2 amines and C3 amides and periodic plumes indicated the influence of industrial emissions from regional transport. The study highlights the significant variations in sources and compositions of gaseous organic compounds at regional mountain sites due to changes in meteorology and photochemical processing, potentially impacting regional ozone and SOA formation.

2.
J Environ Sci (China) ; 123: 156-168, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521981

RESUMO

Accurate and comprehensive knowledge of the atmospheric environment and its evolution within the coastal ocean boundary layer are necessary for understanding the sources, chemical mechanisms, and transport processes of air pollution in land, sea, and atmosphere. We present an overview of coastal ocean boundary layer detection technology and equipment in China and summarize the progress and main achievements in recent years. China has developed a series of coastal ocean boundary layer detection technologies, including Light Detection and Ranging (LIDAR), turbulent exchange analyzer, air-sea flux analyzer, stereoscopic remote sensing of air pollutants, and oceanic aerosol detection equipment to address the technical bottleneck caused by harsh environmental conditions in coastal ocean regions. Advances in these technologies and equipment have provided scientific assistance for addressing air pollution issues and understanding land-sea-atmosphere interactions over coastal ocean regions in China. In the future, routine atmospheric observations should cover the coastal ocean boundary layer of China.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Oceanos e Mares , Tecnologia , China
3.
Cell J ; 24(3): 140-147, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35451584

RESUMO

Objective: Dysregulation of long non-coding RNAs (lncRNAs) is associated with the progression of non-small cell lung cancer (NSCLC). This study aimed to investigate the role of long intergenic non-protein coding RNA 174 (LINC00174) in NSCLC. Materials and Methods: In this experimental study, LINC00174 expression in NSCLC tissues and cell lines was investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Besides, cell counting kit-8 (CCK-8), 5-bromo-2'-deoxyuridine (BrdU). Transwell and Flow Cytometry assays were applied to detect the regulatory function of LINC00174 on the growth, migration and apoptosis of NSCLC cells. Bioinformatics analysis, dual luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay predicted and verified the targeting relationship between LINC00174 and miR-31-5p, and between miR-31-5p and the 3´-untranslated region (3´UTR) of large tumor suppressor kinase 2 (LATS2), respectively. Western blotting was performed to detect the regulatory function of LINC00174 and miR-31-5p on LATS2 protein expression. Results: Compared with that in normal lung tissues, LINC00174 expression in NSCLC tissues and cell lines was reduced. LINC00174 expression was negatively associated with the TNM stage of the patients. Functional experiments showed that LINC00174 overexpression inhibited NSCLC cell multiplication and migration, and induced apoptosis. Furthermore, LINC00174 targeted miR-31-5p and repressed its expression. Additionally, LINC00174 upregulated LATS2 expression through competitively binding to miR-31-5p. Conclusion: LINC00174, as a competitive endogenous RNA, elevates LATS2 expression by adsorbing miR-31-5p, thereby inhibiting the viability and migration of NSCLC cells, and promoting apoptosis.

4.
Sensors (Basel) ; 21(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068048

RESUMO

We report the development of a laser gas analyzer that measures gas concentrations at a data rate of 100 Hz. This fast data rate helps eddy covariance calculations for gas fluxes in turbulent high wind speed environments. The laser gas analyzer is based on derivative laser absorption spectroscopy and set for measurements of water vapor (H2O, at wavelength ~1392 nm) and carbon dioxide (CO2, at ~2004 nm). This instrument, in combination with an ultrasonic anemometer, has been tested experimentally in both marine and terrestrial environments. First, we compared the accuracy of results between the laser gas analyzer and a high-quality commercial instrument with a max data rate of 20 Hz. We then analyzed and compared the correlation of H2O flux results at data rates of 100 Hz and 20 Hz in both high and low wind speeds to verify the contribution of high frequency components. The measurement results show that the contribution of 100 Hz data rate to flux calculations is about 11% compared to that measured with 20 Hz data rate, in an environment with wind speed of ~10 m/s. Therefore, it shows that the laser gas analyzer with high detection frequency is more suitable for measurements in high wind speed environments.

5.
Sci Rep ; 11(1): 8516, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875746

RESUMO

Optoelectronic devices in the UV range have many applications including deep-UV communications, UV photodetectors, UV spectroscopy, etc. Graphene has unique exciton resonances, that have demonstrated large photosensitivity across the UV spectrum. Enhancing UV absorption in graphene has the potential to boost the performance of the various opto-electronic devices. Here we report numerical study of UV absorption in graphene on aluminum and magnesium hole-arrays. The absorption in a single-layer graphene on aluminum and magnesium hole-arrays reached a maximum value of 28% and 30% respectively, and the absorption peak is tunable from the UV to the visible range. The proposed graphene hybrid structure does not require graphene to be sandwiched between different material layers and thus is easy to fabricate and allows graphene to interact with its surroundings.

6.
Environ Sci Technol ; 55(8): 4542-4552, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33769806

RESUMO

Vertical measurements are essential for the characterization of aerosol and boundary layer interactions; yet, our knowledge of vertical profiles of primary and secondary aerosol species in megacities is limited. Here, we conducted comprehensive vertical measurements of aerosol particle composition on a 325 m meteorological tower with two aerosol chemical speciation monitors in winter in urban Beijing. The simultaneous measurements at ground level, 140, and 240 m illustrated similar aerosol bulk composition at these three heights. However, the vertical ratios varied significantly among different aerosol species. Particularly, the vertical ratios of the aqueous phase and photochemical-related secondary organic aerosol (SOA) (aqOOA/OOA) decreased significantly, accompanied by the increases in ratios of secondary to primary OA, highlighting different chemical properties of OA between ground level and aloft, and the large impacts of vertical changes in meteorology and gaseous precursors on SOA formation. The vertical changes in NO3/SO4 ratios, however, were mostly insignificant, likely due to the low relative humidity and aerosol water content that inhibited nocturnal heterogeneous reactions in the residual layer. Considerable increases in the ratios of 240 m to ground level in the early morning were also observed for most aerosol species, demonstrating impact of residual layer on the air pollution of 2nd day.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Monitoramento Ambiental , Meteorologia
7.
J Gene Med ; 22(3): e3134, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31656043

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) has been recognized as a member of the most common human malignant tumors globally. According to multiple studies, long noncoding RNAs (lncRNAs) have been defined as vital regulators in tumor progression. Although previous studies have indicated that lncRNA long intergenic non-protein coding RNA 467 (LINC00467) exerts oncogenic effect in tumorigenesis and the development of cancers, the specific function that LINC00467 induces in HCC remains obscure. METHODS: LINC00467 expression was examined by a quantitative reverse transcriptase-polymerase chain reaction. CCK-8, EdU, transwell, western blotting and caspase-3 activity analyses were utilized to testify the role of LINC00467 in HCC. The interaction between IGF2BP3 and LINC00467 (or TRAF5) was investigated by luciferase reporter, RIP and RNA pull-down assays. RESULTS: LINC00467 upregulation in HCC tissues and cells was observed. LINC00467 silencing suppressed cell proliferation and metastasis, whereas it facilitated cell apoptosis in HCC. The gene for tumor necrosis factor receptor-associated factor 5 (TRAF5) was a neighboring gene of that for LINC00467 and its expression was positively modulated by LINC00467 in HCC. TRAF5 knockdown inhibited HCC progression. LINC00467 deficiency could decrease the mRNA stability of TRAF5 in HCC. Insulin-like growth factor-2 messenger RNA-binding protein 3 (IGF2BP3) could bind with LINC00467 and its depletion could lower TRAF5 mRNA stability in HCC. Final rescue assays further indicated that downregulation of IGF2BP3 or TRAF5 acted against LINC00467 upregulation-mediated function on HCC progression. CONCLUSIONS: LINC00467 promotes cell proliferation and metastasis by binding with IGF2BP3 to enhance the mRNA stability of TRAF5 in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Fator 5 Associado a Receptor de TNF/metabolismo , Apoptose/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/patologia , Metástase Neoplásica , Estabilidade de RNA , Fator 5 Associado a Receptor de TNF/genética , Regulação para Cima
8.
Sci Total Environ ; 681: 226-234, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103660

RESUMO

To understand the temporal characteristics and vertical distributions of ammonia (NH3) and ammonium (NH4) in urban Beijing, we conducted ground-based and tower-based measurements of gaseous NH3 and submicron aerosol composition. The average mixing ratio of NH3 was 16.5 ±â€¯7.4 ppb, ranging from 3.8 to 36.9 ppb. Gas-to-particle partitioning of NHx (=NH3 + NH4) played a significant role on NH3 concentration as the molar ratio of NH3 to NHx decreased as a function of NH4 concentration. The NH3 concentrations increased as a function of PM1 at lower levels (<125 µg m-3), but remained relatively constant at higher PM and NH4 levels, indicating an enhanced gas-to-particle conversion of NH3 during highly polluted conditions. The potential sources of NHx were found to include fossil fuel combustion and biomass burning. Regional transport could also play an important role on NH3 concentration during the formation stage of haze episodes due to particle-to-gas conversion. Four distinctive types of vertical profiles (87% of the time) of both NH3 and fine particle light extinction coefficient (bext) were observed and they were associated with well-mixed atmosphere, fast accumulation of local emissions, regional transport aloft, and the formation of low urban boundary layer, respectively. However, the vertical profiles of NH3 typically (96% of the time) showed a more homogeneous characteristic than those of bext below 260 m, except periods with both strong temperature inversion and large aerosol gradient, the formation of urban boundary layer shall cause a significant transition in the vertical distribution of NH3 below 260 m. During highly polluted situations (PM1 > 125 µg m-3), the strong effect of gas-to-particle partitioning of NHx sometimes (7% of the time) caused opposite trends in vertical profiles of NH3 and bext.

9.
Sci Rep ; 6: 27151, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27243909

RESUMO

We investigate the rapid formation and evolutionary mechanisms of an extremely severe and persistent haze episode that occurred in northern China during winter 2015 using comprehensive ground and vertical measurements, along with receptor and dispersion model analysis. Our results indicate that the life cycle of a severe winter haze episode typically consists of four stages: (1) rapid formation initiated by sudden changes in meteorological parameters and synchronous increases in most aerosol species, (2) persistent evolution with relatively constant variations in secondary inorganic aerosols and secondary organic aerosols, (3) further evolution associated with fog processing and significantly enhanced sulfate levels, and (4) clearing due to dry, cold north-northwesterly winds. Aerosol composition showed substantial changes during the formation and evolution of the haze episode but was generally dominated by regional secondary aerosols (53-67%). Our results demonstrate the important role of regional transport, largely from the southwest but also from the east, and of coal combustion emissions for winter haze formation in Beijing. Also, we observed an important downward mixing pathway during the severe haze in 2015 that can lead to rapid increases in certain aerosol species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...