Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(13): e2300030, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36862024

RESUMO

Auditory motion perception is one crucial capability to decode and discriminate the spatiotemporal information for neuromorphic auditory systems. Doppler frequency-shift feature and interaural time difference (ITD) are two fundamental cues of auditory information processing. In this work, the functions of azimuth detection and velocity detection, as the typical auditory motion perception, are demonstrated in a WOx -based memristive synapse. The WOx memristor presents both the volatile mode (M1) and semi-nonvolatile mode (M2), which are capable of implementing the high-pass filtering and processing the spike trains with a relative timing and frequency shift. In particular, the Doppler frequency-shift information processing for velocity detection is emulated in the WOx memristor based auditory system for the first time, which relies on a scheme of triplet spike-timing-dependent-plasticity in the memristor. These results provide new opportunities for the mimicry of auditory motion perception and enable the auditory sensory system to be applied in future neuromorphic sensing.


Assuntos
Percepção de Movimento , Percepção Auditiva , Cognição , Sinais (Psicologia) , Sinapses
2.
Nanoscale Adv ; 3(9): 2623-2631, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134157

RESUMO

Memristive devices are widely recognized as promising hardware implementations of neuromorphic computing. Herein, a flexible and transparent memristive synapse based on polyvinylpyrrolidone (PVP)/N-doped carbon quantum dot (NCQD) nanocomposites through regulating the NCQD doping concentration is reported. In situ Kelvin probe force microscopy showed that the trapping/detrapping of space charge can account for the memristive mechanism of the device. Diverse synaptic functions, including excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), spike-timing-dependent plasticity (STDP), and the transition from short-term plasticity (STP) to long-term plasticity (LTP), are emulated, enabling the PVP-NCQD hybrid system to be a valuable candidate for the design of novel artificial neural architectures. In addition, the synaptic device showed excellent flexibility against mechanical strain after repeated bending tests. This work provides a new approach to develop flexible and transparent organic artificial synapses for future wearable neuromorphic computing systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...